diff options
Diffstat (limited to 'Eigen')
-rw-r--r-- | Eigen/src/Geometry/Quaternion.h | 5 | ||||
-rw-r--r-- | Eigen/src/SVD/SVD.h | 555 |
2 files changed, 232 insertions, 328 deletions
diff --git a/Eigen/src/Geometry/Quaternion.h b/Eigen/src/Geometry/Quaternion.h index a76ccbdaf..8d1bbf9d2 100644 --- a/Eigen/src/Geometry/Quaternion.h +++ b/Eigen/src/Geometry/Quaternion.h @@ -371,13 +371,14 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBas if (ei_isApprox(c,Scalar(-1))) { c = std::max<Scalar>(c,-1); - - SVD<Matrix<Scalar,3,3> > svd(v0 * v0.transpose() + v1 * v1.transpose()); + Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); + SVD<Matrix<Scalar,2,3> > svd(m); Vector3 axis = svd.matrixV().col(2); Scalar w2 = (Scalar(1)+c)*Scalar(0.5); this->w() = ei_sqrt(w2); this->vec() = axis * ei_sqrt(Scalar(1) - w2); + return *this; } diff --git a/Eigen/src/SVD/SVD.h b/Eigen/src/SVD/SVD.h index 45a7fbfa5..71f6763a8 100644 --- a/Eigen/src/SVD/SVD.h +++ b/Eigen/src/SVD/SVD.h @@ -34,9 +34,7 @@ * * \param MatrixType the type of the matrix of which we are computing the SVD decomposition * - * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N - * with \c M \>= \c N. - * + * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N. * * \sa MatrixBase::SVD() */ @@ -55,13 +53,13 @@ template<typename MatrixType> class SVD typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector; typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector; - typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType; + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixUType; typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType; - typedef Matrix<Scalar, MinSize, 1> SingularValuesType; + typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> SingularValuesType; public: - /** + /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to @@ -70,9 +68,9 @@ template<typename MatrixType> class SVD SVD() : m_matU(), m_matV(), m_sigma(), m_isInitialized(false) {} SVD(const MatrixType& matrix) - : m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())), + : m_matU(matrix.rows(), matrix.rows()), m_matV(matrix.cols(),matrix.cols()), - m_sigma(std::min(matrix.rows(),matrix.cols())), + m_sigma(matrix.cols()), m_isInitialized(false) { compute(matrix); @@ -81,22 +79,22 @@ template<typename MatrixType> class SVD template<typename OtherDerived, typename ResultType> bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const; - const MatrixUType& matrixU() const - { + const MatrixUType& matrixU() const + { ei_assert(m_isInitialized && "SVD is not initialized."); - return m_matU; + return m_matU; } - const SingularValuesType& singularValues() const + const SingularValuesType& singularValues() const { ei_assert(m_isInitialized && "SVD is not initialized."); - return m_sigma; + return m_sigma; } - const MatrixVType& matrixV() const + const MatrixVType& matrixV() const { ei_assert(m_isInitialized && "SVD is not initialized."); - return m_matV; + return m_matV; } void compute(const MatrixType& matrix); @@ -112,6 +110,23 @@ template<typename MatrixType> class SVD void computeScalingRotation(ScalingType *positive, RotationType *unitary) const; protected: + // Computes (a^2 + b^2)^(1/2) without destructive underflow or overflow. + inline static Scalar pythagora(Scalar a, Scalar b) + { + Scalar abs_a = ei_abs(a); + Scalar abs_b = ei_abs(b); + if (abs_a > abs_b) + return abs_a*ei_sqrt(Scalar(1.0)+ei_abs2(abs_b/abs_a)); + else + return (abs_b == Scalar(0.0) ? Scalar(0.0) : abs_b*ei_sqrt(Scalar(1.0)+ei_abs2(abs_a/abs_b))); + } + + inline static Scalar sign(Scalar a, Scalar b) + { + return (b >= Scalar(0.0) ? ei_abs(a) : -ei_abs(a)); + } + + protected: /** \internal */ MatrixUType m_matU; /** \internal */ @@ -123,7 +138,7 @@ template<typename MatrixType> class SVD /** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix * - * \note this code has been adapted from JAMA (public domain) + * \note this code has been adapted from Numerical Recipes, second edition. */ template<typename MatrixType> void SVD<MatrixType>::compute(const MatrixType& matrix) @@ -132,371 +147,259 @@ void SVD<MatrixType>::compute(const MatrixType& matrix) const int n = matrix.cols(); const int nu = std::min(m,n); - m_matU.resize(m, nu); + m_matU.resize(m, m); m_matU.setZero(); - m_sigma.resize(std::min(m,n)); + m_sigma.resize(n); m_matV.resize(n,n); - RowVector e(n); - ColVector work(m); - MatrixType matA(matrix); - const bool wantu = true; - const bool wantv = true; - int i=0, j=0, k=0; - - // Reduce A to bidiagonal form, storing the diagonal elements - // in s and the super-diagonal elements in e. - int nct = std::min(m-1,n); - int nrt = std::max(0,std::min(n-2,m)); - for (k = 0; k < std::max(nct,nrt); ++k) - { - if (k < nct) - { - // Compute the transformation for the k-th column and - // place the k-th diagonal in m_sigma[k]. - m_sigma[k] = matA.col(k).end(m-k).norm(); - if (m_sigma[k] != 0.0) // FIXME - { - if (matA(k,k) < 0.0) - m_sigma[k] = -m_sigma[k]; - matA.col(k).end(m-k) /= m_sigma[k]; - matA(k,k) += 1.0; - } - m_sigma[k] = -m_sigma[k]; - } - - for (j = k+1; j < n; ++j) - { - if ((k < nct) && (m_sigma[k] != 0.0)) - { - // Apply the transformation. - Scalar t = matA.col(k).end(m-k).dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ?? - t = -t/matA(k,k); - matA.col(j).end(m-k) += t * matA.col(k).end(m-k); - } + int max_iters = 30; - // Place the k-th row of A into e for the - // subsequent calculation of the row transformation. - e[j] = matA(k,j); - } + MatrixVType& V = m_matV; + MatrixType A = matrix; + SingularValuesType& W = m_sigma; - // Place the transformation in U for subsequent back multiplication. - if (wantu & (k < nct)) - m_matU.col(k).end(m-k) = matA.col(k).end(m-k); + int flag,i,its,j,jj,k,l,nm; + Scalar anorm, c, f, g, h, s, scale, x, y, z; + bool convergence = true; - if (k < nrt) + Matrix<Scalar,Dynamic,1> rv1(n); + g = scale = anorm = 0; + // Householder reduction to bidiagonal form. + for (i=0; i<n; i++) + { + l = i+1; + rv1[i] = scale*g; + g = s = scale = 0.0; + if (i < m) { - // Compute the k-th row transformation and place the - // k-th super-diagonal in e[k]. - e[k] = e.end(n-k-1).norm(); - if (e[k] != 0.0) - { - if (e[k+1] < 0.0) - e[k] = -e[k]; - e.end(n-k-1) /= e[k]; - e[k+1] += 1.0; - } - e[k] = -e[k]; - if ((k+1 < m) & (e[k] != 0.0)) + scale = A.col(i).end(m-i).cwise().abs().sum(); + if (scale) { - // Apply the transformation. - work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1); - for (j = k+1; j < n; ++j) - matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1); + for (k=i; k<m; k++) + { + A(k, i) /= scale; + s += A(k, i)*A(k, i); + } + f = A(i, i); + g = -sign( ei_sqrt(s), f ); + h = f*g - s; + A(i, i)=f-g; + for (j=l; j<n; j++) + { + s = A.col(i).end(m-i).dot(A.col(j).end(m-i)); + f = s/h; + A.col(j).end(m-i) += f*A.col(i).end(m-i); + } + A.col(i).end(m-i) *= scale; } - - // Place the transformation in V for subsequent back multiplication. - if (wantv) - m_matV.col(k).end(n-k-1) = e.end(n-k-1); - } - } - - - // Set up the final bidiagonal matrix or order p. - int p = std::min(n,m+1); - if (nct < n) - m_sigma[nct] = matA(nct,nct); - if (m < p) - m_sigma[p-1] = 0.0; - if (nrt+1 < p) - e[nrt] = matA(nrt,p-1); - e[p-1] = 0.0; - - // If required, generate U. - if (wantu) - { - for (j = nct; j < nu; ++j) - { - m_matU.col(j).setZero(); - m_matU(j,j) = 1.0; } - for (k = nct-1; k >= 0; k--) + W[i] = scale *g; + g = s = scale = 0.0; + if (i < m && i != (n-1)) { - if (m_sigma[k] != 0.0) + scale = A.row(i).end(n-l).cwise().abs().sum(); + if (scale) { - for (j = k+1; j < nu; ++j) + for (k=l; k<n; k++) { - Scalar t = m_matU.col(k).end(m-k).dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ? - t = -t/m_matU(k,k); - m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k); + A(i, k) /= scale; + s += A(i, k)*A(i, k); } - m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k); - m_matU(k,k) = Scalar(1) + m_matU(k,k); - if (k-1>0) - m_matU.col(k).start(k-1).setZero(); - } - else - { - m_matU.col(k).setZero(); - m_matU(k,k) = 1.0; + f = A(i, l); + g = -sign(ei_sqrt(s),f); + h = f*g - s; + A(i, l) = f-g; + for (k=l; k<n; k++) + rv1[k] = A(i, k)/h; + for (j=l; j<m; j++) + { + s = A.row(j).end(n-l).dot(A.row(i).end(n-l)); + A.row(j).end(n-l) += s*rv1.end(n-l).transpose(); + } + A.row(i).end(n-l) *= scale; } } + anorm = std::max( anorm, (ei_abs(W[i])+ei_abs(rv1[i])) ); } - - // If required, generate V. - if (wantv) + // Accumulation of right-hand transformations. + for (i=(n-1); i>=0; i--) { - for (k = n-1; k >= 0; k--) + //Accumulation of right-hand transformations. + if (i < (n-1)) { - if ((k < nrt) & (e[k] != 0.0)) + if (g) { - for (j = k+1; j < nu; ++j) + for (j=l; j<n;j++) //Double division to avoid possible underflow. + V(j, i) = (A(i, j)/A(i, l))/g; + for (j=l; j<n; j++) { - Scalar t = m_matV.col(k).end(n-k-1).dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ? - t = -t/m_matV(k+1,k); - m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1); + s = A.row(i).end(n-l).dot(V.col(j).end(n-l)); + V.col(j).end(n-l) += s * V.col(i).end(n-l); } } - m_matV.col(k).setZero(); - m_matV(k,k) = 1.0; + V.row(i).end(n-l).setZero(); + V.col(i).end(n-l).setZero(); } + V(i, i) = 1.0; + g = rv1[i]; + l = i; } - - // Main iteration loop for the singular values. - int pp = p-1; - int iter = 0; - Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52)); - while (p > 0) + // Accumulation of left-hand transformations. + for (i=std::min(m,n)-1; i>=0; i--) { - int k=0; - int kase=0; - - // Here is where a test for too many iterations would go. - - // This section of the program inspects for - // negligible elements in the s and e arrays. On - // completion the variables kase and k are set as follows. - - // kase = 1 if s(p) and e[k-1] are negligible and k<p - // kase = 2 if s(k) is negligible and k<p - // kase = 3 if e[k-1] is negligible, k<p, and - // s(k), ..., s(p) are not negligible (qr step). - // kase = 4 if e(p-1) is negligible (convergence). - - for (k = p-2; k >= -1; --k) + l = i+1; + g = W[i]; + for (j=l; j<n; j++) + A(i, j)=0.0; + if (g) { - if (k == -1) - break; - if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1]))) + g = (Scalar)1.0/g; + for (j=l; j<n; j++) { - e[k] = 0.0; - break; + s = A.col(i).end(m-i).dot(A.col(j).end(m-i)); + f = (s/A(i, i))*g; + A.col(j).end(m-i) += f * A.col(i).end(m-i); } - } - if (k == p-2) - { - kase = 4; + A.col(i).end(m-i) *= g; } else + A.col(i).end(m-i).setZero(); + ++A(i, i); + } + // Diagonalization of the bidiagonal form: Loop over + // singular values, and over allowed iterations. + for (k=(n-1); k>=0; k--) + { + for (its=1; its<=max_iters; its++) { - int ks; - for (ks = p-1; ks >= k; --ks) + flag=1; + for (l=k; l>=0; l--) { - if (ks == k) - break; - Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0)); - if (ei_abs(m_sigma[ks]) <= eps*t) + // Test for splitting. + nm=l-1; + // Note that rv1[1] is always zero. + if ((double)(ei_abs(rv1[l])+anorm) == anorm) { - m_sigma[ks] = 0.0; + flag=0; break; } + if ((double)(ei_abs(W[nm])+anorm) == anorm) + break; } - if (ks == k) - { - kase = 3; - } - else if (ks == p-1) - { - kase = 1; - } - else - { - kase = 2; - k = ks; - } - } - ++k; - - // Perform the task indicated by kase. - switch (kase) - { - - // Deflate negligible s(p). - case 1: + if (flag) { - Scalar f(e[p-2]); - e[p-2] = 0.0; - for (j = p-2; j >= k; --j) + c=0.0; //Cancellation of rv1[l], if l > 1. + s=1.0; + for (i=l ;i<=k; i++) { - Scalar t(ei_hypot(m_sigma[j],f)); - Scalar cs(m_sigma[j]/t); - Scalar sn(f/t); - m_sigma[j] = t; - if (j != k) - { - f = -sn*e[j-1]; - e[j-1] = cs*e[j-1]; - } - if (wantv) + f = s*rv1[i]; + rv1[i] = c*rv1[i]; + if ((double)(ei_abs(f)+anorm) == anorm) + break; + g = W[i]; + h = pythagora(f,g); + W[i] = h; + h = (Scalar)1.0/h; + c = g*h; + s = -f*h; + for (j=0; j<m; j++) { - for (i = 0; i < n; ++i) - { - t = cs*m_matV(i,j) + sn*m_matV(i,p-1); - m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1); - m_matV(i,j) = t; - } + y = A(j, nm); + z = A(j, i); + A(j, nm) = y*c + z*s; + A(j, i) = z*c - y*s; } } } - break; - - // Split at negligible s(k). - case 2: + z = W[k]; + if (l == k) //Convergence. { - Scalar f(e[k-1]); - e[k-1] = 0.0; - for (j = k; j < p; ++j) - { - Scalar t(ei_hypot(m_sigma[j],f)); - Scalar cs( m_sigma[j]/t); - Scalar sn(f/t); - m_sigma[j] = t; - f = -sn*e[j]; - e[j] = cs*e[j]; - if (wantu) - { - for (i = 0; i < m; ++i) - { - t = cs*m_matU(i,j) + sn*m_matU(i,k-1); - m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1); - m_matU(i,j) = t; - } - } + if (z < 0.0) { // Singular value is made nonnegative. + W[k] = -z; + V.col(k) = -V.col(k); } + break; } - break; - - // Perform one qr step. - case 3: + if (its == max_iters) { - // Calculate the shift. - Scalar scale = std::max(std::max(std::max(std::max( - ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])), - ei_abs(m_sigma[k])),ei_abs(e[k])); - Scalar sp = m_sigma[p-1]/scale; - Scalar spm1 = m_sigma[p-2]/scale; - Scalar epm1 = e[p-2]/scale; - Scalar sk = m_sigma[k]/scale; - Scalar ek = e[k]/scale; - Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2); - Scalar c = (sp*epm1)*(sp*epm1); - Scalar shift = 0.0; - if ((b != 0.0) || (c != 0.0)) + convergence = false; + } + x = W[l]; // Shift from bottom 2-by-2 minor. + nm = k-1; + y = W[nm]; + g = rv1[nm]; + h = rv1[k]; + f = ((y-z)*(y+z) + (g-h)*(g+h))/((Scalar)2.0*h*y); + g = pythagora(f,1.0); + f = ((x-z)*(x+z) + h*((y/(f+sign(g,f)))-h))/x; + c = s = 1.0; + //Next QR transformation: + for (j=l; j<= nm;j++) + { + i = j+1; + g = rv1[i]; + y = W[i]; + h = s*g; + g = c*g; + z = pythagora(f,h); + rv1[j] = z; + c = f/z; + s = h/z; + f = x*c + g*s; + g = g*c - x*s; + h = y*s; + y *= c; + for (jj=0; jj<n; jj++) { - shift = ei_sqrt(b*b + c); - if (b < 0.0) - shift = -shift; - shift = c/(b + shift); + x = V(jj, j); + z = V(jj, i); + V(jj, j) = x*c + z*s; + V(jj, i) = z*c - x*s; } - Scalar f = (sk + sp)*(sk - sp) + shift; - Scalar g = sk*ek; - - // Chase zeros. - - for (j = k; j < p-1; ++j) + z = pythagora(f,h); + W[j] = z; + // Rotation can be arbitrary if z = 0. + if (z) { - Scalar t = ei_hypot(f,g); - Scalar cs = f/t; - Scalar sn = g/t; - if (j != k) - e[j-1] = t; - f = cs*m_sigma[j] + sn*e[j]; - e[j] = cs*e[j] - sn*m_sigma[j]; - g = sn*m_sigma[j+1]; - m_sigma[j+1] = cs*m_sigma[j+1]; - if (wantv) - { - for (i = 0; i < n; ++i) - { - t = cs*m_matV(i,j) + sn*m_matV(i,j+1); - m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1); - m_matV(i,j) = t; - } - } - t = ei_hypot(f,g); - cs = f/t; - sn = g/t; - m_sigma[j] = t; - f = cs*e[j] + sn*m_sigma[j+1]; - m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1]; - g = sn*e[j+1]; - e[j+1] = cs*e[j+1]; - if (wantu && (j < m-1)) - { - for (i = 0; i < m; ++i) - { - t = cs*m_matU(i,j) + sn*m_matU(i,j+1); - m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1); - m_matU(i,j) = t; - } - } + z = Scalar(1.0)/z; + c = f*z; + s = h*z; } - e[p-2] = f; - iter = iter + 1; - } - break; - - // Convergence. - case 4: - { - // Make the singular values positive. - if (m_sigma[k] <= 0.0) + f = c*g + s*y; + x = c*y - s*g; + for (jj=0; jj<m; jj++) { - m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0); - if (wantv) - m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1); + y = A(jj, j); + z = A(jj, i); + A(jj, j) = y*c + z*s; + A(jj, i) = z*c - y*s; } + } + rv1[l] = 0.0; + rv1[k] = f; + W[k] = x; + } + } - // Order the singular values. - while (k < pp) - { - if (m_sigma[k] >= m_sigma[k+1]) - break; - Scalar t = m_sigma[k]; - m_sigma[k] = m_sigma[k+1]; - m_sigma[k+1] = t; - if (wantv && (k < n-1)) - m_matV.col(k).swap(m_matV.col(k+1)); - if (wantu && (k < m-1)) - m_matU.col(k).swap(m_matU.col(k+1)); - ++k; - } - iter = 0; - p--; + // sort the singular values: + { + for (int i=0; i<n; i++) + { + int k; + W.end(n-i).minCoeff(&k); + if (k != i) + { + std::swap(W[k],W[i]); + A.col(i).swap(A.col(k)); + V.col(i).swap(V.col(k)); } - break; - } // end big switch - } // end iterations + } + } + m_matU.setZero(); + if (m>=n) + m_matU.block(0,0,m,n) = A; + else + m_matU = A.block(0,0,m,m); m_isInitialized = true; } |