aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2009-07-06 13:47:41 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2009-07-06 13:47:41 +0200
commit0c2232e5d972986ed90c917b68fb24eef372841b (patch)
tree0c02c5c3ab6076f7ad1ddf815401d2c9e819d984 /Eigen
parent0cd158820cb8acb18507158fc1e3be327cdd0213 (diff)
quick reimplementation of SVD from the numeral recipes book:
this is still not Eigen style code but at least it works for n>m and it is more accurate than the JAMA based version. (I needed it now, this is why I did that)
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/src/Geometry/Quaternion.h5
-rw-r--r--Eigen/src/SVD/SVD.h555
2 files changed, 232 insertions, 328 deletions
diff --git a/Eigen/src/Geometry/Quaternion.h b/Eigen/src/Geometry/Quaternion.h
index a76ccbdaf..8d1bbf9d2 100644
--- a/Eigen/src/Geometry/Quaternion.h
+++ b/Eigen/src/Geometry/Quaternion.h
@@ -371,13 +371,14 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBas
if (ei_isApprox(c,Scalar(-1)))
{
c = std::max<Scalar>(c,-1);
-
- SVD<Matrix<Scalar,3,3> > svd(v0 * v0.transpose() + v1 * v1.transpose());
+ Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
+ SVD<Matrix<Scalar,2,3> > svd(m);
Vector3 axis = svd.matrixV().col(2);
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
this->w() = ei_sqrt(w2);
this->vec() = axis * ei_sqrt(Scalar(1) - w2);
+
return *this;
}
diff --git a/Eigen/src/SVD/SVD.h b/Eigen/src/SVD/SVD.h
index 45a7fbfa5..71f6763a8 100644
--- a/Eigen/src/SVD/SVD.h
+++ b/Eigen/src/SVD/SVD.h
@@ -34,9 +34,7 @@
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
*
- * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
- * with \c M \>= \c N.
- *
+ * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N.
*
* \sa MatrixBase::SVD()
*/
@@ -55,13 +53,13 @@ template<typename MatrixType> class SVD
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
- typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
- typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> SingularValuesType;
public:
- /**
+ /**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
@@ -70,9 +68,9 @@ template<typename MatrixType> class SVD
SVD() : m_matU(), m_matV(), m_sigma(), m_isInitialized(false) {}
SVD(const MatrixType& matrix)
- : m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
+ : m_matU(matrix.rows(), matrix.rows()),
m_matV(matrix.cols(),matrix.cols()),
- m_sigma(std::min(matrix.rows(),matrix.cols())),
+ m_sigma(matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
@@ -81,22 +79,22 @@ template<typename MatrixType> class SVD
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
- const MatrixUType& matrixU() const
- {
+ const MatrixUType& matrixU() const
+ {
ei_assert(m_isInitialized && "SVD is not initialized.");
- return m_matU;
+ return m_matU;
}
- const SingularValuesType& singularValues() const
+ const SingularValuesType& singularValues() const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
- return m_sigma;
+ return m_sigma;
}
- const MatrixVType& matrixV() const
+ const MatrixVType& matrixV() const
{
ei_assert(m_isInitialized && "SVD is not initialized.");
- return m_matV;
+ return m_matV;
}
void compute(const MatrixType& matrix);
@@ -112,6 +110,23 @@ template<typename MatrixType> class SVD
void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
protected:
+ // Computes (a^2 + b^2)^(1/2) without destructive underflow or overflow.
+ inline static Scalar pythagora(Scalar a, Scalar b)
+ {
+ Scalar abs_a = ei_abs(a);
+ Scalar abs_b = ei_abs(b);
+ if (abs_a > abs_b)
+ return abs_a*ei_sqrt(Scalar(1.0)+ei_abs2(abs_b/abs_a));
+ else
+ return (abs_b == Scalar(0.0) ? Scalar(0.0) : abs_b*ei_sqrt(Scalar(1.0)+ei_abs2(abs_a/abs_b)));
+ }
+
+ inline static Scalar sign(Scalar a, Scalar b)
+ {
+ return (b >= Scalar(0.0) ? ei_abs(a) : -ei_abs(a));
+ }
+
+ protected:
/** \internal */
MatrixUType m_matU;
/** \internal */
@@ -123,7 +138,7 @@ template<typename MatrixType> class SVD
/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
*
- * \note this code has been adapted from JAMA (public domain)
+ * \note this code has been adapted from Numerical Recipes, second edition.
*/
template<typename MatrixType>
void SVD<MatrixType>::compute(const MatrixType& matrix)
@@ -132,371 +147,259 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
const int n = matrix.cols();
const int nu = std::min(m,n);
- m_matU.resize(m, nu);
+ m_matU.resize(m, m);
m_matU.setZero();
- m_sigma.resize(std::min(m,n));
+ m_sigma.resize(n);
m_matV.resize(n,n);
- RowVector e(n);
- ColVector work(m);
- MatrixType matA(matrix);
- const bool wantu = true;
- const bool wantv = true;
- int i=0, j=0, k=0;
-
- // Reduce A to bidiagonal form, storing the diagonal elements
- // in s and the super-diagonal elements in e.
- int nct = std::min(m-1,n);
- int nrt = std::max(0,std::min(n-2,m));
- for (k = 0; k < std::max(nct,nrt); ++k)
- {
- if (k < nct)
- {
- // Compute the transformation for the k-th column and
- // place the k-th diagonal in m_sigma[k].
- m_sigma[k] = matA.col(k).end(m-k).norm();
- if (m_sigma[k] != 0.0) // FIXME
- {
- if (matA(k,k) < 0.0)
- m_sigma[k] = -m_sigma[k];
- matA.col(k).end(m-k) /= m_sigma[k];
- matA(k,k) += 1.0;
- }
- m_sigma[k] = -m_sigma[k];
- }
-
- for (j = k+1; j < n; ++j)
- {
- if ((k < nct) && (m_sigma[k] != 0.0))
- {
- // Apply the transformation.
- Scalar t = matA.col(k).end(m-k).dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
- t = -t/matA(k,k);
- matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
- }
+ int max_iters = 30;
- // Place the k-th row of A into e for the
- // subsequent calculation of the row transformation.
- e[j] = matA(k,j);
- }
+ MatrixVType& V = m_matV;
+ MatrixType A = matrix;
+ SingularValuesType& W = m_sigma;
- // Place the transformation in U for subsequent back multiplication.
- if (wantu & (k < nct))
- m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
+ int flag,i,its,j,jj,k,l,nm;
+ Scalar anorm, c, f, g, h, s, scale, x, y, z;
+ bool convergence = true;
- if (k < nrt)
+ Matrix<Scalar,Dynamic,1> rv1(n);
+ g = scale = anorm = 0;
+ // Householder reduction to bidiagonal form.
+ for (i=0; i<n; i++)
+ {
+ l = i+1;
+ rv1[i] = scale*g;
+ g = s = scale = 0.0;
+ if (i < m)
{
- // Compute the k-th row transformation and place the
- // k-th super-diagonal in e[k].
- e[k] = e.end(n-k-1).norm();
- if (e[k] != 0.0)
- {
- if (e[k+1] < 0.0)
- e[k] = -e[k];
- e.end(n-k-1) /= e[k];
- e[k+1] += 1.0;
- }
- e[k] = -e[k];
- if ((k+1 < m) & (e[k] != 0.0))
+ scale = A.col(i).end(m-i).cwise().abs().sum();
+ if (scale)
{
- // Apply the transformation.
- work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
- for (j = k+1; j < n; ++j)
- matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
+ for (k=i; k<m; k++)
+ {
+ A(k, i) /= scale;
+ s += A(k, i)*A(k, i);
+ }
+ f = A(i, i);
+ g = -sign( ei_sqrt(s), f );
+ h = f*g - s;
+ A(i, i)=f-g;
+ for (j=l; j<n; j++)
+ {
+ s = A.col(i).end(m-i).dot(A.col(j).end(m-i));
+ f = s/h;
+ A.col(j).end(m-i) += f*A.col(i).end(m-i);
+ }
+ A.col(i).end(m-i) *= scale;
}
-
- // Place the transformation in V for subsequent back multiplication.
- if (wantv)
- m_matV.col(k).end(n-k-1) = e.end(n-k-1);
- }
- }
-
-
- // Set up the final bidiagonal matrix or order p.
- int p = std::min(n,m+1);
- if (nct < n)
- m_sigma[nct] = matA(nct,nct);
- if (m < p)
- m_sigma[p-1] = 0.0;
- if (nrt+1 < p)
- e[nrt] = matA(nrt,p-1);
- e[p-1] = 0.0;
-
- // If required, generate U.
- if (wantu)
- {
- for (j = nct; j < nu; ++j)
- {
- m_matU.col(j).setZero();
- m_matU(j,j) = 1.0;
}
- for (k = nct-1; k >= 0; k--)
+ W[i] = scale *g;
+ g = s = scale = 0.0;
+ if (i < m && i != (n-1))
{
- if (m_sigma[k] != 0.0)
+ scale = A.row(i).end(n-l).cwise().abs().sum();
+ if (scale)
{
- for (j = k+1; j < nu; ++j)
+ for (k=l; k<n; k++)
{
- Scalar t = m_matU.col(k).end(m-k).dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
- t = -t/m_matU(k,k);
- m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
+ A(i, k) /= scale;
+ s += A(i, k)*A(i, k);
}
- m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
- m_matU(k,k) = Scalar(1) + m_matU(k,k);
- if (k-1>0)
- m_matU.col(k).start(k-1).setZero();
- }
- else
- {
- m_matU.col(k).setZero();
- m_matU(k,k) = 1.0;
+ f = A(i, l);
+ g = -sign(ei_sqrt(s),f);
+ h = f*g - s;
+ A(i, l) = f-g;
+ for (k=l; k<n; k++)
+ rv1[k] = A(i, k)/h;
+ for (j=l; j<m; j++)
+ {
+ s = A.row(j).end(n-l).dot(A.row(i).end(n-l));
+ A.row(j).end(n-l) += s*rv1.end(n-l).transpose();
+ }
+ A.row(i).end(n-l) *= scale;
}
}
+ anorm = std::max( anorm, (ei_abs(W[i])+ei_abs(rv1[i])) );
}
-
- // If required, generate V.
- if (wantv)
+ // Accumulation of right-hand transformations.
+ for (i=(n-1); i>=0; i--)
{
- for (k = n-1; k >= 0; k--)
+ //Accumulation of right-hand transformations.
+ if (i < (n-1))
{
- if ((k < nrt) & (e[k] != 0.0))
+ if (g)
{
- for (j = k+1; j < nu; ++j)
+ for (j=l; j<n;j++) //Double division to avoid possible underflow.
+ V(j, i) = (A(i, j)/A(i, l))/g;
+ for (j=l; j<n; j++)
{
- Scalar t = m_matV.col(k).end(n-k-1).dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
- t = -t/m_matV(k+1,k);
- m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
+ s = A.row(i).end(n-l).dot(V.col(j).end(n-l));
+ V.col(j).end(n-l) += s * V.col(i).end(n-l);
}
}
- m_matV.col(k).setZero();
- m_matV(k,k) = 1.0;
+ V.row(i).end(n-l).setZero();
+ V.col(i).end(n-l).setZero();
}
+ V(i, i) = 1.0;
+ g = rv1[i];
+ l = i;
}
-
- // Main iteration loop for the singular values.
- int pp = p-1;
- int iter = 0;
- Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
- while (p > 0)
+ // Accumulation of left-hand transformations.
+ for (i=std::min(m,n)-1; i>=0; i--)
{
- int k=0;
- int kase=0;
-
- // Here is where a test for too many iterations would go.
-
- // This section of the program inspects for
- // negligible elements in the s and e arrays. On
- // completion the variables kase and k are set as follows.
-
- // kase = 1 if s(p) and e[k-1] are negligible and k<p
- // kase = 2 if s(k) is negligible and k<p
- // kase = 3 if e[k-1] is negligible, k<p, and
- // s(k), ..., s(p) are not negligible (qr step).
- // kase = 4 if e(p-1) is negligible (convergence).
-
- for (k = p-2; k >= -1; --k)
+ l = i+1;
+ g = W[i];
+ for (j=l; j<n; j++)
+ A(i, j)=0.0;
+ if (g)
{
- if (k == -1)
- break;
- if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
+ g = (Scalar)1.0/g;
+ for (j=l; j<n; j++)
{
- e[k] = 0.0;
- break;
+ s = A.col(i).end(m-i).dot(A.col(j).end(m-i));
+ f = (s/A(i, i))*g;
+ A.col(j).end(m-i) += f * A.col(i).end(m-i);
}
- }
- if (k == p-2)
- {
- kase = 4;
+ A.col(i).end(m-i) *= g;
}
else
+ A.col(i).end(m-i).setZero();
+ ++A(i, i);
+ }
+ // Diagonalization of the bidiagonal form: Loop over
+ // singular values, and over allowed iterations.
+ for (k=(n-1); k>=0; k--)
+ {
+ for (its=1; its<=max_iters; its++)
{
- int ks;
- for (ks = p-1; ks >= k; --ks)
+ flag=1;
+ for (l=k; l>=0; l--)
{
- if (ks == k)
- break;
- Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
- if (ei_abs(m_sigma[ks]) <= eps*t)
+ // Test for splitting.
+ nm=l-1;
+ // Note that rv1[1] is always zero.
+ if ((double)(ei_abs(rv1[l])+anorm) == anorm)
{
- m_sigma[ks] = 0.0;
+ flag=0;
break;
}
+ if ((double)(ei_abs(W[nm])+anorm) == anorm)
+ break;
}
- if (ks == k)
- {
- kase = 3;
- }
- else if (ks == p-1)
- {
- kase = 1;
- }
- else
- {
- kase = 2;
- k = ks;
- }
- }
- ++k;
-
- // Perform the task indicated by kase.
- switch (kase)
- {
-
- // Deflate negligible s(p).
- case 1:
+ if (flag)
{
- Scalar f(e[p-2]);
- e[p-2] = 0.0;
- for (j = p-2; j >= k; --j)
+ c=0.0; //Cancellation of rv1[l], if l > 1.
+ s=1.0;
+ for (i=l ;i<=k; i++)
{
- Scalar t(ei_hypot(m_sigma[j],f));
- Scalar cs(m_sigma[j]/t);
- Scalar sn(f/t);
- m_sigma[j] = t;
- if (j != k)
- {
- f = -sn*e[j-1];
- e[j-1] = cs*e[j-1];
- }
- if (wantv)
+ f = s*rv1[i];
+ rv1[i] = c*rv1[i];
+ if ((double)(ei_abs(f)+anorm) == anorm)
+ break;
+ g = W[i];
+ h = pythagora(f,g);
+ W[i] = h;
+ h = (Scalar)1.0/h;
+ c = g*h;
+ s = -f*h;
+ for (j=0; j<m; j++)
{
- for (i = 0; i < n; ++i)
- {
- t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
- m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
- m_matV(i,j) = t;
- }
+ y = A(j, nm);
+ z = A(j, i);
+ A(j, nm) = y*c + z*s;
+ A(j, i) = z*c - y*s;
}
}
}
- break;
-
- // Split at negligible s(k).
- case 2:
+ z = W[k];
+ if (l == k) //Convergence.
{
- Scalar f(e[k-1]);
- e[k-1] = 0.0;
- for (j = k; j < p; ++j)
- {
- Scalar t(ei_hypot(m_sigma[j],f));
- Scalar cs( m_sigma[j]/t);
- Scalar sn(f/t);
- m_sigma[j] = t;
- f = -sn*e[j];
- e[j] = cs*e[j];
- if (wantu)
- {
- for (i = 0; i < m; ++i)
- {
- t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
- m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
- m_matU(i,j) = t;
- }
- }
+ if (z < 0.0) { // Singular value is made nonnegative.
+ W[k] = -z;
+ V.col(k) = -V.col(k);
}
+ break;
}
- break;
-
- // Perform one qr step.
- case 3:
+ if (its == max_iters)
{
- // Calculate the shift.
- Scalar scale = std::max(std::max(std::max(std::max(
- ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
- ei_abs(m_sigma[k])),ei_abs(e[k]));
- Scalar sp = m_sigma[p-1]/scale;
- Scalar spm1 = m_sigma[p-2]/scale;
- Scalar epm1 = e[p-2]/scale;
- Scalar sk = m_sigma[k]/scale;
- Scalar ek = e[k]/scale;
- Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
- Scalar c = (sp*epm1)*(sp*epm1);
- Scalar shift = 0.0;
- if ((b != 0.0) || (c != 0.0))
+ convergence = false;
+ }
+ x = W[l]; // Shift from bottom 2-by-2 minor.
+ nm = k-1;
+ y = W[nm];
+ g = rv1[nm];
+ h = rv1[k];
+ f = ((y-z)*(y+z) + (g-h)*(g+h))/((Scalar)2.0*h*y);
+ g = pythagora(f,1.0);
+ f = ((x-z)*(x+z) + h*((y/(f+sign(g,f)))-h))/x;
+ c = s = 1.0;
+ //Next QR transformation:
+ for (j=l; j<= nm;j++)
+ {
+ i = j+1;
+ g = rv1[i];
+ y = W[i];
+ h = s*g;
+ g = c*g;
+ z = pythagora(f,h);
+ rv1[j] = z;
+ c = f/z;
+ s = h/z;
+ f = x*c + g*s;
+ g = g*c - x*s;
+ h = y*s;
+ y *= c;
+ for (jj=0; jj<n; jj++)
{
- shift = ei_sqrt(b*b + c);
- if (b < 0.0)
- shift = -shift;
- shift = c/(b + shift);
+ x = V(jj, j);
+ z = V(jj, i);
+ V(jj, j) = x*c + z*s;
+ V(jj, i) = z*c - x*s;
}
- Scalar f = (sk + sp)*(sk - sp) + shift;
- Scalar g = sk*ek;
-
- // Chase zeros.
-
- for (j = k; j < p-1; ++j)
+ z = pythagora(f,h);
+ W[j] = z;
+ // Rotation can be arbitrary if z = 0.
+ if (z)
{
- Scalar t = ei_hypot(f,g);
- Scalar cs = f/t;
- Scalar sn = g/t;
- if (j != k)
- e[j-1] = t;
- f = cs*m_sigma[j] + sn*e[j];
- e[j] = cs*e[j] - sn*m_sigma[j];
- g = sn*m_sigma[j+1];
- m_sigma[j+1] = cs*m_sigma[j+1];
- if (wantv)
- {
- for (i = 0; i < n; ++i)
- {
- t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
- m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
- m_matV(i,j) = t;
- }
- }
- t = ei_hypot(f,g);
- cs = f/t;
- sn = g/t;
- m_sigma[j] = t;
- f = cs*e[j] + sn*m_sigma[j+1];
- m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
- g = sn*e[j+1];
- e[j+1] = cs*e[j+1];
- if (wantu && (j < m-1))
- {
- for (i = 0; i < m; ++i)
- {
- t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
- m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
- m_matU(i,j) = t;
- }
- }
+ z = Scalar(1.0)/z;
+ c = f*z;
+ s = h*z;
}
- e[p-2] = f;
- iter = iter + 1;
- }
- break;
-
- // Convergence.
- case 4:
- {
- // Make the singular values positive.
- if (m_sigma[k] <= 0.0)
+ f = c*g + s*y;
+ x = c*y - s*g;
+ for (jj=0; jj<m; jj++)
{
- m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
- if (wantv)
- m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
+ y = A(jj, j);
+ z = A(jj, i);
+ A(jj, j) = y*c + z*s;
+ A(jj, i) = z*c - y*s;
}
+ }
+ rv1[l] = 0.0;
+ rv1[k] = f;
+ W[k] = x;
+ }
+ }
- // Order the singular values.
- while (k < pp)
- {
- if (m_sigma[k] >= m_sigma[k+1])
- break;
- Scalar t = m_sigma[k];
- m_sigma[k] = m_sigma[k+1];
- m_sigma[k+1] = t;
- if (wantv && (k < n-1))
- m_matV.col(k).swap(m_matV.col(k+1));
- if (wantu && (k < m-1))
- m_matU.col(k).swap(m_matU.col(k+1));
- ++k;
- }
- iter = 0;
- p--;
+ // sort the singular values:
+ {
+ for (int i=0; i<n; i++)
+ {
+ int k;
+ W.end(n-i).minCoeff(&k);
+ if (k != i)
+ {
+ std::swap(W[k],W[i]);
+ A.col(i).swap(A.col(k));
+ V.col(i).swap(V.col(k));
}
- break;
- } // end big switch
- } // end iterations
+ }
+ }
+ m_matU.setZero();
+ if (m>=n)
+ m_matU.block(0,0,m,n) = A;
+ else
+ m_matU = A.block(0,0,m,m);
m_isInitialized = true;
}