diff options
Diffstat (limited to 'Eigen/src')
-rw-r--r-- | Eigen/src/Core/ReturnByValue.h | 5 | ||||
-rw-r--r-- | Eigen/src/LU/LU.h | 189 |
2 files changed, 112 insertions, 82 deletions
diff --git a/Eigen/src/Core/ReturnByValue.h b/Eigen/src/Core/ReturnByValue.h index 4a5d5c105..afe9ecbbd 100644 --- a/Eigen/src/Core/ReturnByValue.h +++ b/Eigen/src/Core/ReturnByValue.h @@ -2,6 +2,7 @@ // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> +// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -37,6 +38,10 @@ struct ei_traits<ReturnByValue<Derived> > }; }; +/* The ReturnByValue object doesn't even have a coeff() method. + * So the only way that nesting it in an expression can work, is by evaluating it into a plain matrix. + * So ei_nested always gives the plain return matrix type. + */ template<typename Derived,int n,typename PlainMatrixType> struct ei_nested<ReturnByValue<Derived>, n, PlainMatrixType> { diff --git a/Eigen/src/LU/LU.h b/Eigen/src/LU/LU.h index e848b5454..0475b5be3 100644 --- a/Eigen/src/LU/LU.h +++ b/Eigen/src/LU/LU.h @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -25,6 +25,90 @@ #ifndef EIGEN_LU_H #define EIGEN_LU_H +template<typename MatrixType, typename Rhs> struct ei_lu_solve_impl; + +template<typename MatrixType,typename Rhs> +struct ei_traits<ei_lu_solve_impl<MatrixType,Rhs> > +{ + typedef Matrix<typename Rhs::Scalar, + MatrixType::ColsAtCompileTime, + Rhs::ColsAtCompileTime, + Rhs::PlainMatrixType::Options, + MatrixType::MaxColsAtCompileTime, + Rhs::MaxColsAtCompileTime> ReturnMatrixType; +}; + +template<typename MatrixType, typename Rhs> +struct ei_lu_solve_impl : public ReturnByValue<ei_lu_solve_impl<MatrixType, Rhs> > +{ + typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested; + typedef LU<MatrixType> LUType; + + ei_lu_solve_impl(const LUType& lu, const Rhs& rhs) + : m_lu(lu), m_rhs(rhs) + {} + + inline int rows() const { return m_lu.matrixLU().cols(); } + inline int cols() const { return m_rhs.cols(); } + + template<typename Dest> void evalTo(Dest& dst) const + { + dst.resize(m_lu.matrixLU().cols(), m_rhs.cols()); + if(m_lu.rank()==0) + { + dst.setZero(); + return; + } + + /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. + * So we proceed as follows: + * Step 1: compute c = P * rhs. + * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. + * Step 3: replace c by the solution x to Ux = c. May or may not exist. + * Step 4: result = Q * c; + */ + + const int rows = m_lu.matrixLU().rows(), + cols = m_lu.matrixLU().cols(), + rank = m_lu.rank(); + ei_assert(m_rhs.rows() == rows); + const int smalldim = std::min(rows, cols); + + typename Rhs::PlainMatrixType c(m_rhs.rows(), m_rhs.cols()); + + // Step 1 + for(int i = 0; i < rows; ++i) + c.row(m_lu.permutationP().coeff(i)) = m_rhs.row(i); + + // Step 2 + m_lu.matrixLU() + .corner(Eigen::TopLeft,smalldim,smalldim) + .template triangularView<UnitLowerTriangular>() + .solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols())); + if(rows>cols) + { + c.corner(Eigen::BottomLeft, rows-cols, c.cols()) + -= m_lu.matrixLU().corner(Eigen::BottomLeft, rows-cols, cols) + * c.corner(Eigen::TopLeft, cols, c.cols()); + } + + // Step 3 + m_lu.matrixLU() + .corner(TopLeft, rank, rank) + .template triangularView<UpperTriangular>() + .solveInPlace(c.corner(TopLeft, rank, c.cols())); + + // Step 4 + for(int i = 0; i < rank; ++i) + dst.row(m_lu.permutationQ().coeff(i)) = c.row(i); + for(int i = rank; i < m_lu.matrixLU().cols(); ++i) + dst.row(m_lu.permutationQ().coeff(i)).setZero(); + } + + const LUType& m_lu; + const typename Rhs::Nested m_rhs; +}; + /** \ingroup LU_Module * * \class LU @@ -83,8 +167,8 @@ template<typename MatrixType> class LU > KernelResultType; typedef Matrix<typename MatrixType::Scalar, - MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number - // of rows of the original matrix + MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose + // dimension is the number of rows of the original matrix Dynamic, // we don't know at compile time the dimension of the image (the rank) MatrixType::Options, MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix, @@ -114,7 +198,7 @@ template<typename MatrixType> class LU * \returns a reference to *this */ LU& compute(const MatrixType& matrix); - + /** \returns the LU decomposition matrix: the upper-triangular part is U, the * unit-lower-triangular part is L (at least for square matrices; in the non-square * case, special care is needed, see the documentation of class LU). @@ -215,29 +299,35 @@ template<typename MatrixType> class LU */ const ImageResultType image() const; - /** This method finds a solution x to the equation Ax=b, where A is the matrix of which - * *this is the LU decomposition, if any exists. + /** This method returns a solution x to the equation Ax=b, where A is the matrix of which + * *this is the LU decomposition. + * + * If no solution exists, then the result is undefined. If only an approximate solution exists, + * then the result is only such an approximate solution. * * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, * the only requirement in order for the equation to make sense is that * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. - * \param result a pointer to the vector or matrix in which to store the solution, if any exists. - * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols(). - * If no solution exists, *result is left with undefined coefficients. - * - * \returns true if any solution exists, false if no solution exists. * - * \note If there exist more than one solution, this method will arbitrarily choose one. - * If you need a complete analysis of the space of solutions, take the one solution obtained - * by this method and add to it elements of the kernel, as determined by kernel(). + * \returns a solution, if any exists. See notes below. * * Example: \include LU_solve.cpp * Output: \verbinclude LU_solve.out * + * \note \note_about_inexistant_solutions + * + * \note \note_about_arbitrary_choice_of_solution + * \note_about_using_kernel_to_study_multiple_solutions + * * \sa TriangularView::solve(), kernel(), computeKernel(), inverse(), computeInverse() */ - template<typename OtherDerived, typename ResultType> - bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const; + template<typename Rhs> + inline const ei_lu_solve_impl<MatrixType, Rhs> + solve(const MatrixBase<Rhs>& b) const + { + ei_assert(m_originalMatrix != 0 && "LU is not initialized."); + return ei_lu_solve_impl<MatrixType, Rhs>(*this, b.derived()); + } /** \returns the determinant of the matrix of which * *this is the LU decomposition. It has only linear complexity @@ -326,7 +416,7 @@ template<typename MatrixType> class LU { ei_assert(m_originalMatrix != 0 && "LU is not initialized."); ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); - solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result); + *result = solve(MatrixType::Identity(m_lu.rows(), m_lu.cols())); } /** \returns the inverse of the matrix of which *this is the LU decomposition. @@ -526,71 +616,6 @@ LU<MatrixType>::image() const return result; } -template<typename MatrixType> -template<typename OtherDerived, typename ResultType> -bool LU<MatrixType>::solve( - const MatrixBase<OtherDerived>& b, - ResultType *result -) const -{ - ei_assert(m_originalMatrix != 0 && "LU is not initialized."); - result->resize(m_lu.cols(), b.cols()); - if(m_rank==0) - { - if(b.squaredNorm() == RealScalar(0)) - { - result->setZero(); - return true; - } - else return false; - } - - /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. - * So we proceed as follows: - * Step 1: compute c = Pb. - * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. - * Step 3: replace c by the solution x to Ux = c. Check if a solution really exists. - * Step 4: result = Qc; - */ - - const int rows = m_lu.rows(), cols = m_lu.cols(); - ei_assert(b.rows() == rows); - const int smalldim = std::min(rows, cols); - - typename OtherDerived::PlainMatrixType c(b.rows(), b.cols()); - - // Step 1 - for(int i = 0; i < rows; ++i) c.row(m_p.coeff(i)) = b.row(i); - - // Step 2 - m_lu.corner(Eigen::TopLeft,smalldim,smalldim) - .template triangularView<UnitLowerTriangular>() - .solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols())); - if(rows>cols) - { - c.corner(Eigen::BottomLeft, rows-cols, c.cols()) - -= m_lu.corner(Eigen::BottomLeft, rows-cols, cols) * c.corner(Eigen::TopLeft, cols, c.cols()); - } - - // Step 3 - if(!isSurjective()) - { - // is c is in the image of U ? - RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff(); - RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff(); - if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision)) - return false; - } - m_lu.corner(TopLeft, m_rank, m_rank) - .template triangularView<UpperTriangular>() - .solveInPlace(c.corner(TopLeft, m_rank, c.cols())); - - // Step 4 - for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = c.row(i); - for(int i = m_rank; i < m_lu.cols(); ++i) result->row(m_q.coeff(i)).setZero(); - return true; -} - /** \lu_module * * \return the LU decomposition of \c *this. |