1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_LU_H
#define EIGEN_LU_H
template<typename MatrixType, typename Rhs> struct ei_lu_solve_impl;
template<typename MatrixType,typename Rhs>
struct ei_traits<ei_lu_solve_impl<MatrixType,Rhs> >
{
typedef Matrix<typename Rhs::Scalar,
MatrixType::ColsAtCompileTime,
Rhs::ColsAtCompileTime,
Rhs::PlainMatrixType::Options,
MatrixType::MaxColsAtCompileTime,
Rhs::MaxColsAtCompileTime> ReturnMatrixType;
};
template<typename MatrixType, typename Rhs>
struct ei_lu_solve_impl : public ReturnByValue<ei_lu_solve_impl<MatrixType, Rhs> >
{
typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested;
typedef LU<MatrixType> LUType;
ei_lu_solve_impl(const LUType& lu, const Rhs& rhs)
: m_lu(lu), m_rhs(rhs)
{}
inline int rows() const { return m_lu.matrixLU().cols(); }
inline int cols() const { return m_rhs.cols(); }
template<typename Dest> void evalTo(Dest& dst) const
{
dst.resize(m_lu.matrixLU().cols(), m_rhs.cols());
if(m_lu.rank()==0)
{
dst.setZero();
return;
}
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
* So we proceed as follows:
* Step 1: compute c = P * rhs.
* Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
* Step 3: replace c by the solution x to Ux = c. May or may not exist.
* Step 4: result = Q * c;
*/
const int rows = m_lu.matrixLU().rows(),
cols = m_lu.matrixLU().cols(),
rank = m_lu.rank();
ei_assert(m_rhs.rows() == rows);
const int smalldim = std::min(rows, cols);
typename Rhs::PlainMatrixType c(m_rhs.rows(), m_rhs.cols());
// Step 1
for(int i = 0; i < rows; ++i)
c.row(m_lu.permutationP().coeff(i)) = m_rhs.row(i);
// Step 2
m_lu.matrixLU()
.corner(Eigen::TopLeft,smalldim,smalldim)
.template triangularView<UnitLowerTriangular>()
.solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols()));
if(rows>cols)
{
c.corner(Eigen::BottomLeft, rows-cols, c.cols())
-= m_lu.matrixLU().corner(Eigen::BottomLeft, rows-cols, cols)
* c.corner(Eigen::TopLeft, cols, c.cols());
}
// Step 3
m_lu.matrixLU()
.corner(TopLeft, rank, rank)
.template triangularView<UpperTriangular>()
.solveInPlace(c.corner(TopLeft, rank, c.cols()));
// Step 4
for(int i = 0; i < rank; ++i)
dst.row(m_lu.permutationQ().coeff(i)) = c.row(i);
for(int i = rank; i < m_lu.matrixLU().cols(); ++i)
dst.row(m_lu.permutationQ().coeff(i)).setZero();
}
const LUType& m_lu;
const typename Rhs::Nested m_rhs;
};
/** \ingroup LU_Module
*
* \class LU
*
* \brief LU decomposition of a matrix with complete pivoting, and related features
*
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
* is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
* are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
* coefficients) of U are sorted in such a way that any zeros are at the end, so that the rank
* of A is the index of the first zero on the diagonal of U (with indices starting at 0) if any.
*
* This decomposition provides the generic approach to solving systems of linear equations, computing
* the rank, invertibility, inverse, kernel, and determinant.
*
* This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
* decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
* working with the SVD allows to select the smallest singular values of the matrix, something that
* the LU decomposition doesn't see.
*
* The data of the LU decomposition can be directly accessed through the methods matrixLU(),
* permutationP(), permutationQ().
*
* As an exemple, here is how the original matrix can be retrieved:
* \include class_LU.cpp
* Output: \verbinclude class_LU.out
*
* \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse()
*/
template<typename MatrixType> class LU
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
enum { MaxSmallDimAtCompileTime = EIGEN_ENUM_MIN(
MatrixType::MaxColsAtCompileTime,
MatrixType::MaxRowsAtCompileTime)
};
typedef Matrix<typename MatrixType::Scalar,
MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
// so that the product "matrix * kernel = zero" makes sense
Dynamic, // we don't know at compile-time the dimension of the kernel
MatrixType::Options,
MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
// of columns of the original matrix
> KernelResultType;
typedef Matrix<typename MatrixType::Scalar,
MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose
// dimension is the number of rows of the original matrix
Dynamic, // we don't know at compile time the dimension of the image (the rank)
MatrixType::Options,
MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
> ImageResultType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LU::compute(const MatrixType&).
*/
LU();
/** Constructor.
*
* \param matrix the matrix of which to compute the LU decomposition.
* It is required to be nonzero.
*/
LU(const MatrixType& matrix);
/** Computes the LU decomposition of the given matrix.
*
* \param matrix the matrix of which to compute the LU decomposition.
* It is required to be nonzero.
*
* \returns a reference to *this
*/
LU& compute(const MatrixType& matrix);
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
* case, special care is needed, see the documentation of class LU).
*
* \sa matrixL(), matrixU()
*/
inline const MatrixType& matrixLU() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return m_lu;
}
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
* representing the P permutation i.e. the permutation of the rows. For its precise meaning,
* see the examples given in the documentation of class LU.
*
* \sa permutationQ()
*/
inline const IntColVectorType& permutationP() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return m_p;
}
/** \returns a vector of integers, whose size is the number of columns of the matrix being
* decomposed, representing the Q permutation i.e. the permutation of the columns.
* For its precise meaning, see the examples given in the documentation of class LU.
*
* \sa permutationP()
*/
inline const IntRowVectorType& permutationQ() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return m_q;
}
/** Computes a basis of the kernel of the matrix, also called the null-space of the matrix.
*
* \note This method is only allowed on non-invertible matrices, as determined by
* isInvertible(). Calling it on an invertible matrix will make an assertion fail.
*
* \param result a pointer to the matrix in which to store the kernel. The columns of this
* matrix will be set to form a basis of the kernel (it will be resized
* if necessary).
*
* Example: \include LU_computeKernel.cpp
* Output: \verbinclude LU_computeKernel.out
*
* \sa kernel(), computeImage(), image()
*/
template<typename KernelMatrixType>
void computeKernel(KernelMatrixType *result) const;
/** Computes a basis of the image of the matrix, also called the column-space or range of he matrix.
*
* \note Calling this method on the zero matrix will make an assertion fail.
*
* \param result a pointer to the matrix in which to store the image. The columns of this
* matrix will be set to form a basis of the image (it will be resized
* if necessary).
*
* Example: \include LU_computeImage.cpp
* Output: \verbinclude LU_computeImage.out
*
* \sa image(), computeKernel(), kernel()
*/
template<typename ImageMatrixType>
void computeImage(ImageMatrixType *result) const;
/** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
* will form a basis of the kernel.
*
* \note: this method is only allowed on non-invertible matrices, as determined by
* isInvertible(). Calling it on an invertible matrix will make an assertion fail.
*
* \note: this method returns a matrix by value, which induces some inefficiency.
* If you prefer to avoid this overhead, use computeKernel() instead.
*
* Example: \include LU_kernel.cpp
* Output: \verbinclude LU_kernel.out
*
* \sa computeKernel(), image()
*/
const KernelResultType kernel() const;
/** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
* will form a basis of the kernel.
*
* \note: Calling this method on the zero matrix will make an assertion fail.
*
* \note: this method returns a matrix by value, which induces some inefficiency.
* If you prefer to avoid this overhead, use computeImage() instead.
*
* Example: \include LU_image.cpp
* Output: \verbinclude LU_image.out
*
* \sa computeImage(), kernel()
*/
const ImageResultType image() const;
/** This method returns a solution x to the equation Ax=b, where A is the matrix of which
* *this is the LU decomposition.
*
* If no solution exists, then the result is undefined. If only an approximate solution exists,
* then the result is only such an approximate solution.
*
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
* the only requirement in order for the equation to make sense is that
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
*
* \returns a solution, if any exists. See notes below.
*
* Example: \include LU_solve.cpp
* Output: \verbinclude LU_solve.out
*
* \note \note_about_inexistant_solutions
*
* \note \note_about_arbitrary_choice_of_solution
* \note_about_using_kernel_to_study_multiple_solutions
*
* \sa TriangularView::solve(), kernel(), computeKernel(), inverse(), computeInverse()
*/
template<typename Rhs>
inline const ei_lu_solve_impl<MatrixType, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return ei_lu_solve_impl<MatrixType, Rhs>(*this, b.derived());
}
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the LU decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
* optimized paths.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
*
* \sa MatrixBase::determinant()
*/
typename ei_traits<MatrixType>::Scalar determinant() const;
/** \returns the rank of the matrix of which *this is the LU decomposition.
*
* \note This is computed at the time of the construction of the LU decomposition. This
* method does not perform any further computation.
*/
inline int rank() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return m_rank;
}
/** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
*
* \note Since the rank is computed at the time of the construction of the LU decomposition, this
* method almost does not perform any further computation.
*/
inline int dimensionOfKernel() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return m_lu.cols() - m_rank;
}
/** \returns true if the matrix of which *this is the LU decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the LU decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInjective() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return m_rank == m_lu.cols();
}
/** \returns true if the matrix of which *this is the LU decomposition represents a surjective
* linear map; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the LU decomposition, this
* method almost does not perform any further computation.
*/
inline bool isSurjective() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return m_rank == m_lu.rows();
}
/** \returns true if the matrix of which *this is the LU decomposition is invertible.
*
* \note Since the rank is computed at the time of the construction of the LU decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInvertible() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
return isInjective() && isSurjective();
}
/** Computes the inverse of the matrix of which *this is the LU decomposition.
*
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
*
* \note If this matrix is not invertible, *result is left with undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa MatrixBase::computeInverse(), inverse()
*/
inline void computeInverse(MatrixType *result) const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
*result = solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()));
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa computeInverse(), MatrixBase::inverse()
*/
inline MatrixType inverse() const
{
MatrixType result;
computeInverse(&result);
return result;
}
protected:
const MatrixType* m_originalMatrix;
MatrixType m_lu;
IntColVectorType m_p;
IntRowVectorType m_q;
int m_det_pq;
int m_rank;
RealScalar m_precision;
};
template<typename MatrixType>
LU<MatrixType>::LU()
: m_originalMatrix(0),
m_lu(),
m_p(),
m_q(),
m_det_pq(0),
m_rank(-1),
m_precision(precision<RealScalar>())
{
}
template<typename MatrixType>
LU<MatrixType>::LU(const MatrixType& matrix)
: m_originalMatrix(0),
m_lu(),
m_p(),
m_q(),
m_det_pq(0),
m_rank(-1),
m_precision(precision<RealScalar>())
{
compute(matrix);
}
template<typename MatrixType>
LU<MatrixType>& LU<MatrixType>::compute(const MatrixType& matrix)
{
m_originalMatrix = &matrix;
m_lu = matrix;
m_p.resize(matrix.rows());
m_q.resize(matrix.cols());
const int size = matrix.diagonalSize();
const int rows = matrix.rows();
const int cols = matrix.cols();
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
m_precision = epsilon<Scalar>() * size;
IntColVectorType rows_transpositions(matrix.rows());
IntRowVectorType cols_transpositions(matrix.cols());
int number_of_transpositions = 0;
RealScalar biggest = RealScalar(0);
m_rank = size;
for(int k = 0; k < size; ++k)
{
int row_of_biggest_in_corner, col_of_biggest_in_corner;
RealScalar biggest_in_corner;
biggest_in_corner = m_lu.corner(Eigen::BottomRight, rows-k, cols-k)
.cwise().abs()
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
row_of_biggest_in_corner += k;
col_of_biggest_in_corner += k;
if(k==0) biggest = biggest_in_corner;
// if the corner is negligible, then we have less than full rank, and we can finish early
if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
{
m_rank = k;
for(int i = k; i < size; i++)
{
rows_transpositions.coeffRef(i) = i;
cols_transpositions.coeffRef(i) = i;
}
break;
}
rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
if(k != row_of_biggest_in_corner) {
m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
++number_of_transpositions;
}
if(k != col_of_biggest_in_corner) {
m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
++number_of_transpositions;
}
if(k<rows-1)
m_lu.col(k).end(rows-k-1) /= m_lu.coeff(k,k);
if(k<size-1)
m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).end(rows-k-1) * m_lu.row(k).end(cols-k-1);
}
for(int k = 0; k < matrix.rows(); ++k) m_p.coeffRef(k) = k;
for(int k = size-1; k >= 0; --k)
std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
for(int k = 0; k < matrix.cols(); ++k) m_q.coeffRef(k) = k;
for(int k = 0; k < size; ++k)
std::swap(m_q.coeffRef(k), m_q.coeffRef(cols_transpositions.coeff(k)));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
return *this;
}
template<typename MatrixType>
typename ei_traits<MatrixType>::Scalar LU<MatrixType>::determinant() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
return Scalar(m_det_pq) * m_lu.diagonal().prod();
}
template<typename MatrixType>
template<typename KernelMatrixType>
void LU<MatrixType>::computeKernel(KernelMatrixType *result) const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
const int dimker = dimensionOfKernel(), cols = m_lu.cols();
result->resize(cols, dimker);
/* Let us use the following lemma:
*
* Lemma: If the matrix A has the LU decomposition PAQ = LU,
* then Ker A = Q(Ker U).
*
* Proof: trivial: just keep in mind that P, Q, L are invertible.
*/
/* Thus, all we need to do is to compute Ker U, and then apply Q.
*
* U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
* Thus, the diagonal of U ends with exactly
* m_dimKer zero's. Let us use that to construct m_dimKer linearly
* independent vectors in Ker U.
*/
Matrix<Scalar, Dynamic, Dynamic, MatrixType::Options,
MatrixType::MaxColsAtCompileTime, MatrixType::MaxColsAtCompileTime>
y(-m_lu.corner(TopRight, m_rank, dimker));
m_lu.corner(TopLeft, m_rank, m_rank)
.template triangularView<UpperTriangular>().solveInPlace(y);
for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = y.row(i);
for(int i = m_rank; i < cols; ++i) result->row(m_q.coeff(i)).setZero();
for(int k = 0; k < dimker; ++k) result->coeffRef(m_q.coeff(m_rank+k), k) = Scalar(1);
}
template<typename MatrixType>
const typename LU<MatrixType>::KernelResultType
LU<MatrixType>::kernel() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
KernelResultType result(m_lu.cols(), dimensionOfKernel());
computeKernel(&result);
return result;
}
template<typename MatrixType>
template<typename ImageMatrixType>
void LU<MatrixType>::computeImage(ImageMatrixType *result) const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
result->resize(m_originalMatrix->rows(), m_rank);
for(int i = 0; i < m_rank; ++i)
result->col(i) = m_originalMatrix->col(m_q.coeff(i));
}
template<typename MatrixType>
const typename LU<MatrixType>::ImageResultType
LU<MatrixType>::image() const
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
ImageResultType result(m_originalMatrix->rows(), m_rank);
computeImage(&result);
return result;
}
/** \lu_module
*
* \return the LU decomposition of \c *this.
*
* \sa class LU
*/
template<typename Derived>
inline const LU<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::lu() const
{
return LU<PlainMatrixType>(eval());
}
#endif // EIGEN_LU_H
|