diff options
Diffstat (limited to 'Eigen/src/EigenSolver/Tridiagonalization.h')
-rw-r--r-- | Eigen/src/EigenSolver/Tridiagonalization.h | 317 |
1 files changed, 317 insertions, 0 deletions
diff --git a/Eigen/src/EigenSolver/Tridiagonalization.h b/Eigen/src/EigenSolver/Tridiagonalization.h new file mode 100644 index 000000000..e0bff17b9 --- /dev/null +++ b/Eigen/src/EigenSolver/Tridiagonalization.h @@ -0,0 +1,317 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_TRIDIAGONALIZATION_H +#define EIGEN_TRIDIAGONALIZATION_H + +/** \ingroup EigenSolver_Module + * \nonstableyet + * + * \class Tridiagonalization + * + * \brief Trigiagonal decomposition of a selfadjoint matrix + * + * \param MatrixType the type of the matrix of which we are performing the tridiagonalization + * + * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: + * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. + * + * \sa MatrixBase::tridiagonalize() + */ +template<typename _MatrixType> class Tridiagonalization +{ + public: + + typedef _MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef typename ei_packet_traits<Scalar>::type Packet; + + enum { + Size = MatrixType::RowsAtCompileTime, + SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic + ? Dynamic + : MatrixType::RowsAtCompileTime-1, + PacketSize = ei_packet_traits<Scalar>::size + }; + + typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType; + typedef Matrix<RealScalar, Size, 1> DiagonalType; + typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType; + + typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex, + typename NestByValue<Diagonal<MatrixType,0> >::RealReturnType, + Diagonal<MatrixType,0> + >::ret DiagonalReturnType; + + typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex, + typename NestByValue<Diagonal< + NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 > >::RealReturnType, + Diagonal< + NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 > + >::ret SubDiagonalReturnType; + + /** This constructor initializes a Tridiagonalization object for + * further use with Tridiagonalization::compute() + */ + Tridiagonalization(int size = Size==Dynamic ? 2 : Size) + : m_matrix(size,size), m_hCoeffs(size-1) + {} + + Tridiagonalization(const MatrixType& matrix) + : m_matrix(matrix), m_hCoeffs(matrix.cols()-1) + { + _compute(m_matrix, m_hCoeffs); + } + + /** Computes or re-compute the tridiagonalization for the matrix \a matrix. + * + * This method allows to re-use the allocated data. + */ + void compute(const MatrixType& matrix) + { + m_matrix = matrix; + m_hCoeffs.resize(matrix.rows()-1, 1); + _compute(m_matrix, m_hCoeffs); + } + + /** \returns the householder coefficients allowing to + * reconstruct the matrix Q from the packed data. + * + * \sa packedMatrix() + */ + inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; } + + /** \returns the internal result of the decomposition. + * + * The returned matrix contains the following information: + * - the strict upper part is equal to the input matrix A + * - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real). + * - the rest of the lower part contains the Householder vectors that, combined with + * Householder coefficients returned by householderCoefficients(), + * allows to reconstruct the matrix Q as follow: + * Q = H_{N-1} ... H_1 H_0 + * where the matrices H are the Householder transformations: + * H_i = (I - h_i * v_i * v_i') + * where h_i == householderCoefficients()[i] and v_i is a Householder vector: + * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ] + * + * See LAPACK for further details on this packed storage. + */ + inline const MatrixType& packedMatrix(void) const { return m_matrix; } + + MatrixType matrixQ() const; + template<typename QDerived> void matrixQInPlace(MatrixBase<QDerived>* q) const; + MatrixType matrixT() const; + const DiagonalReturnType diagonal(void) const; + const SubDiagonalReturnType subDiagonal(void) const; + + static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); + + static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs); + + protected: + + static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true); + + MatrixType m_matrix; + CoeffVectorType m_hCoeffs; +}; + +/** \returns an expression of the diagonal vector */ +template<typename MatrixType> +const typename Tridiagonalization<MatrixType>::DiagonalReturnType +Tridiagonalization<MatrixType>::diagonal(void) const +{ + return m_matrix.diagonal().nestByValue(); +} + +/** \returns an expression of the sub-diagonal vector */ +template<typename MatrixType> +const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType +Tridiagonalization<MatrixType>::subDiagonal(void) const +{ + int n = m_matrix.rows(); + return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1) + .nestByValue().diagonal().nestByValue(); +} + +/** constructs and returns the tridiagonal matrix T. + * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix. + * Therefore, it might be often sufficient to directly use the packed matrix, or the vector + * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix. + */ +template<typename MatrixType> +typename Tridiagonalization<MatrixType>::MatrixType +Tridiagonalization<MatrixType>::matrixT(void) const +{ + // FIXME should this function (and other similar ones) rather take a matrix as argument + // and fill it ? (to avoid temporaries) + int n = m_matrix.rows(); + MatrixType matT = m_matrix; + matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate(); + if (n>2) + { + matT.corner(TopRight,n-2, n-2).template triangularView<UpperTriangular>().setZero(); + matT.corner(BottomLeft,n-2, n-2).template triangularView<LowerTriangular>().setZero(); + } + return matT; +} + +#ifndef EIGEN_HIDE_HEAVY_CODE + +/** \internal + * Performs a tridiagonal decomposition of \a matA in place. + * + * \param matA the input selfadjoint matrix + * \param hCoeffs returned Householder coefficients + * + * The result is written in the lower triangular part of \a matA. + * + * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. + * + * \sa packedMatrix() + */ +template<typename MatrixType> +void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs) +{ + assert(matA.rows()==matA.cols()); + int n = matA.rows(); + Matrix<Scalar,1,Dynamic> aux(n); + for (int i = 0; i<n-1; ++i) + { + int remainingSize = n-i-1; + RealScalar beta; + Scalar h; + matA.col(i).end(remainingSize).makeHouseholderInPlace(&h, &beta); + + // Apply similarity transformation to remaining columns, + // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).end(n-i-1) + matA.col(i).coeffRef(i+1) = 1; + + hCoeffs.end(n-i-1) = (matA.corner(BottomRight,remainingSize,remainingSize).template selfadjointView<LowerTriangular>() + * (ei_conj(h) * matA.col(i).end(remainingSize))); + + hCoeffs.end(n-i-1) += (ei_conj(h)*Scalar(-0.5)*(hCoeffs.end(remainingSize).dot(matA.col(i).end(remainingSize)))) * matA.col(i).end(n-i-1); + + matA.corner(BottomRight, remainingSize, remainingSize).template selfadjointView<LowerTriangular>() + .rankUpdate(matA.col(i).end(remainingSize), hCoeffs.end(remainingSize), -1); + + matA.col(i).coeffRef(i+1) = beta; + hCoeffs.coeffRef(i) = h; + } +} + +/** reconstructs and returns the matrix Q */ +template<typename MatrixType> +typename Tridiagonalization<MatrixType>::MatrixType +Tridiagonalization<MatrixType>::matrixQ(void) const +{ + MatrixType matQ; + matrixQInPlace(&matQ); + return matQ; +} + +template<typename MatrixType> +template<typename QDerived> +void Tridiagonalization<MatrixType>::matrixQInPlace(MatrixBase<QDerived>* q) const +{ + QDerived& matQ = q->derived(); + int n = m_matrix.rows(); + matQ = MatrixType::Identity(n,n); + Matrix<Scalar,1,Dynamic> aux(n); + for (int i = n-2; i>=0; i--) + { + matQ.corner(BottomRight,n-i-1,n-i-1) + .applyHouseholderOnTheLeft(m_matrix.col(i).end(n-i-2), ei_conj(m_hCoeffs.coeff(i)), &aux.coeffRef(0,0)); + } +} + +/** Performs a full decomposition in place */ +template<typename MatrixType> +void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) +{ + int n = mat.rows(); + ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1); + if (n==3 && (!NumTraits<Scalar>::IsComplex) ) + { + _decomposeInPlace3x3(mat, diag, subdiag, extractQ); + } + else + { + Tridiagonalization tridiag(mat); + diag = tridiag.diagonal(); + subdiag = tridiag.subDiagonal(); + if (extractQ) + tridiag.matrixQInPlace(&mat); + } +} + +/** \internal + * Optimized path for 3x3 matrices. + * Especially useful for plane fitting. + */ +template<typename MatrixType> +void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) +{ + diag[0] = ei_real(mat(0,0)); + RealScalar v1norm2 = ei_abs2(mat(0,2)); + if (ei_isMuchSmallerThan(v1norm2, RealScalar(1))) + { + diag[1] = ei_real(mat(1,1)); + diag[2] = ei_real(mat(2,2)); + subdiag[0] = ei_real(mat(0,1)); + subdiag[1] = ei_real(mat(1,2)); + if (extractQ) + mat.setIdentity(); + } + else + { + RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2); + RealScalar invBeta = RealScalar(1)/beta; + Scalar m01 = mat(0,1) * invBeta; + Scalar m02 = mat(0,2) * invBeta; + Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1)); + diag[1] = ei_real(mat(1,1) + m02*q); + diag[2] = ei_real(mat(2,2) - m02*q); + subdiag[0] = beta; + subdiag[1] = ei_real(mat(1,2) - m01 * q); + if (extractQ) + { + mat(0,0) = 1; + mat(0,1) = 0; + mat(0,2) = 0; + mat(1,0) = 0; + mat(1,1) = m01; + mat(1,2) = m02; + mat(2,0) = 0; + mat(2,1) = m02; + mat(2,2) = -m01; + } + } +} + +#endif // EIGEN_HIDE_HEAVY_CODE + +#endif // EIGEN_TRIDIAGONALIZATION_H |