aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/EigenSolver/Tridiagonalization.h
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2009-09-03 11:39:44 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2009-09-03 11:39:44 +0200
commita54b99fa72e34a4ed6da643f32517a43a4ae76b6 (patch)
treec5a10291aee09f2f910f9c4aa358a7cf71f1180a /Eigen/src/EigenSolver/Tridiagonalization.h
parent9515b00876ab8e84ae4beb61e8661400ebb49522 (diff)
move eigen values related stuff of the QR module to a new EigenSolver module.
- perhaps we can find a better name ? - note that the QR module still includes the EigenSolver module for compatibility
Diffstat (limited to 'Eigen/src/EigenSolver/Tridiagonalization.h')
-rw-r--r--Eigen/src/EigenSolver/Tridiagonalization.h317
1 files changed, 317 insertions, 0 deletions
diff --git a/Eigen/src/EigenSolver/Tridiagonalization.h b/Eigen/src/EigenSolver/Tridiagonalization.h
new file mode 100644
index 000000000..e0bff17b9
--- /dev/null
+++ b/Eigen/src/EigenSolver/Tridiagonalization.h
@@ -0,0 +1,317 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_TRIDIAGONALIZATION_H
+#define EIGEN_TRIDIAGONALIZATION_H
+
+/** \ingroup EigenSolver_Module
+ * \nonstableyet
+ *
+ * \class Tridiagonalization
+ *
+ * \brief Trigiagonal decomposition of a selfadjoint matrix
+ *
+ * \param MatrixType the type of the matrix of which we are performing the tridiagonalization
+ *
+ * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
+ * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
+ *
+ * \sa MatrixBase::tridiagonalize()
+ */
+template<typename _MatrixType> class Tridiagonalization
+{
+ public:
+
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename ei_packet_traits<Scalar>::type Packet;
+
+ enum {
+ Size = MatrixType::RowsAtCompileTime,
+ SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
+ ? Dynamic
+ : MatrixType::RowsAtCompileTime-1,
+ PacketSize = ei_packet_traits<Scalar>::size
+ };
+
+ typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
+ typedef Matrix<RealScalar, Size, 1> DiagonalType;
+ typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
+
+ typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
+ typename NestByValue<Diagonal<MatrixType,0> >::RealReturnType,
+ Diagonal<MatrixType,0>
+ >::ret DiagonalReturnType;
+
+ typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
+ typename NestByValue<Diagonal<
+ NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 > >::RealReturnType,
+ Diagonal<
+ NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> >,0 >
+ >::ret SubDiagonalReturnType;
+
+ /** This constructor initializes a Tridiagonalization object for
+ * further use with Tridiagonalization::compute()
+ */
+ Tridiagonalization(int size = Size==Dynamic ? 2 : Size)
+ : m_matrix(size,size), m_hCoeffs(size-1)
+ {}
+
+ Tridiagonalization(const MatrixType& matrix)
+ : m_matrix(matrix), m_hCoeffs(matrix.cols()-1)
+ {
+ _compute(m_matrix, m_hCoeffs);
+ }
+
+ /** Computes or re-compute the tridiagonalization for the matrix \a matrix.
+ *
+ * This method allows to re-use the allocated data.
+ */
+ void compute(const MatrixType& matrix)
+ {
+ m_matrix = matrix;
+ m_hCoeffs.resize(matrix.rows()-1, 1);
+ _compute(m_matrix, m_hCoeffs);
+ }
+
+ /** \returns the householder coefficients allowing to
+ * reconstruct the matrix Q from the packed data.
+ *
+ * \sa packedMatrix()
+ */
+ inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
+
+ /** \returns the internal result of the decomposition.
+ *
+ * The returned matrix contains the following information:
+ * - the strict upper part is equal to the input matrix A
+ * - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
+ * - the rest of the lower part contains the Householder vectors that, combined with
+ * Householder coefficients returned by householderCoefficients(),
+ * allows to reconstruct the matrix Q as follow:
+ * Q = H_{N-1} ... H_1 H_0
+ * where the matrices H are the Householder transformations:
+ * H_i = (I - h_i * v_i * v_i')
+ * where h_i == householderCoefficients()[i] and v_i is a Householder vector:
+ * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
+ *
+ * See LAPACK for further details on this packed storage.
+ */
+ inline const MatrixType& packedMatrix(void) const { return m_matrix; }
+
+ MatrixType matrixQ() const;
+ template<typename QDerived> void matrixQInPlace(MatrixBase<QDerived>* q) const;
+ MatrixType matrixT() const;
+ const DiagonalReturnType diagonal(void) const;
+ const SubDiagonalReturnType subDiagonal(void) const;
+
+ static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
+
+ static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
+
+ protected:
+
+ static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
+
+ MatrixType m_matrix;
+ CoeffVectorType m_hCoeffs;
+};
+
+/** \returns an expression of the diagonal vector */
+template<typename MatrixType>
+const typename Tridiagonalization<MatrixType>::DiagonalReturnType
+Tridiagonalization<MatrixType>::diagonal(void) const
+{
+ return m_matrix.diagonal().nestByValue();
+}
+
+/** \returns an expression of the sub-diagonal vector */
+template<typename MatrixType>
+const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
+Tridiagonalization<MatrixType>::subDiagonal(void) const
+{
+ int n = m_matrix.rows();
+ return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
+ .nestByValue().diagonal().nestByValue();
+}
+
+/** constructs and returns the tridiagonal matrix T.
+ * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
+ * Therefore, it might be often sufficient to directly use the packed matrix, or the vector
+ * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
+ */
+template<typename MatrixType>
+typename Tridiagonalization<MatrixType>::MatrixType
+Tridiagonalization<MatrixType>::matrixT(void) const
+{
+ // FIXME should this function (and other similar ones) rather take a matrix as argument
+ // and fill it ? (to avoid temporaries)
+ int n = m_matrix.rows();
+ MatrixType matT = m_matrix;
+ matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate();
+ if (n>2)
+ {
+ matT.corner(TopRight,n-2, n-2).template triangularView<UpperTriangular>().setZero();
+ matT.corner(BottomLeft,n-2, n-2).template triangularView<LowerTriangular>().setZero();
+ }
+ return matT;
+}
+
+#ifndef EIGEN_HIDE_HEAVY_CODE
+
+/** \internal
+ * Performs a tridiagonal decomposition of \a matA in place.
+ *
+ * \param matA the input selfadjoint matrix
+ * \param hCoeffs returned Householder coefficients
+ *
+ * The result is written in the lower triangular part of \a matA.
+ *
+ * Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
+ *
+ * \sa packedMatrix()
+ */
+template<typename MatrixType>
+void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
+{
+ assert(matA.rows()==matA.cols());
+ int n = matA.rows();
+ Matrix<Scalar,1,Dynamic> aux(n);
+ for (int i = 0; i<n-1; ++i)
+ {
+ int remainingSize = n-i-1;
+ RealScalar beta;
+ Scalar h;
+ matA.col(i).end(remainingSize).makeHouseholderInPlace(&h, &beta);
+
+ // Apply similarity transformation to remaining columns,
+ // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).end(n-i-1)
+ matA.col(i).coeffRef(i+1) = 1;
+
+ hCoeffs.end(n-i-1) = (matA.corner(BottomRight,remainingSize,remainingSize).template selfadjointView<LowerTriangular>()
+ * (ei_conj(h) * matA.col(i).end(remainingSize)));
+
+ hCoeffs.end(n-i-1) += (ei_conj(h)*Scalar(-0.5)*(hCoeffs.end(remainingSize).dot(matA.col(i).end(remainingSize)))) * matA.col(i).end(n-i-1);
+
+ matA.corner(BottomRight, remainingSize, remainingSize).template selfadjointView<LowerTriangular>()
+ .rankUpdate(matA.col(i).end(remainingSize), hCoeffs.end(remainingSize), -1);
+
+ matA.col(i).coeffRef(i+1) = beta;
+ hCoeffs.coeffRef(i) = h;
+ }
+}
+
+/** reconstructs and returns the matrix Q */
+template<typename MatrixType>
+typename Tridiagonalization<MatrixType>::MatrixType
+Tridiagonalization<MatrixType>::matrixQ(void) const
+{
+ MatrixType matQ;
+ matrixQInPlace(&matQ);
+ return matQ;
+}
+
+template<typename MatrixType>
+template<typename QDerived>
+void Tridiagonalization<MatrixType>::matrixQInPlace(MatrixBase<QDerived>* q) const
+{
+ QDerived& matQ = q->derived();
+ int n = m_matrix.rows();
+ matQ = MatrixType::Identity(n,n);
+ Matrix<Scalar,1,Dynamic> aux(n);
+ for (int i = n-2; i>=0; i--)
+ {
+ matQ.corner(BottomRight,n-i-1,n-i-1)
+ .applyHouseholderOnTheLeft(m_matrix.col(i).end(n-i-2), ei_conj(m_hCoeffs.coeff(i)), &aux.coeffRef(0,0));
+ }
+}
+
+/** Performs a full decomposition in place */
+template<typename MatrixType>
+void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
+{
+ int n = mat.rows();
+ ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1);
+ if (n==3 && (!NumTraits<Scalar>::IsComplex) )
+ {
+ _decomposeInPlace3x3(mat, diag, subdiag, extractQ);
+ }
+ else
+ {
+ Tridiagonalization tridiag(mat);
+ diag = tridiag.diagonal();
+ subdiag = tridiag.subDiagonal();
+ if (extractQ)
+ tridiag.matrixQInPlace(&mat);
+ }
+}
+
+/** \internal
+ * Optimized path for 3x3 matrices.
+ * Especially useful for plane fitting.
+ */
+template<typename MatrixType>
+void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
+{
+ diag[0] = ei_real(mat(0,0));
+ RealScalar v1norm2 = ei_abs2(mat(0,2));
+ if (ei_isMuchSmallerThan(v1norm2, RealScalar(1)))
+ {
+ diag[1] = ei_real(mat(1,1));
+ diag[2] = ei_real(mat(2,2));
+ subdiag[0] = ei_real(mat(0,1));
+ subdiag[1] = ei_real(mat(1,2));
+ if (extractQ)
+ mat.setIdentity();
+ }
+ else
+ {
+ RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2);
+ RealScalar invBeta = RealScalar(1)/beta;
+ Scalar m01 = mat(0,1) * invBeta;
+ Scalar m02 = mat(0,2) * invBeta;
+ Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1));
+ diag[1] = ei_real(mat(1,1) + m02*q);
+ diag[2] = ei_real(mat(2,2) - m02*q);
+ subdiag[0] = beta;
+ subdiag[1] = ei_real(mat(1,2) - m01 * q);
+ if (extractQ)
+ {
+ mat(0,0) = 1;
+ mat(0,1) = 0;
+ mat(0,2) = 0;
+ mat(1,0) = 0;
+ mat(1,1) = m01;
+ mat(1,2) = m02;
+ mat(2,0) = 0;
+ mat(2,1) = m02;
+ mat(2,2) = -m01;
+ }
+ }
+}
+
+#endif // EIGEN_HIDE_HEAVY_CODE
+
+#endif // EIGEN_TRIDIAGONALIZATION_H