aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/StableNorm.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/StableNorm.h')
-rw-r--r--Eigen/src/Core/StableNorm.h194
1 files changed, 194 insertions, 0 deletions
diff --git a/Eigen/src/Core/StableNorm.h b/Eigen/src/Core/StableNorm.h
new file mode 100644
index 000000000..383c64f01
--- /dev/null
+++ b/Eigen/src/Core/StableNorm.h
@@ -0,0 +1,194 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_STABLENORM_H
+#define EIGEN_STABLENORM_H
+
+template<typename ExpressionType, typename Scalar>
+inline void ei_stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
+{
+ Scalar max = bl.cwise().abs().maxCoeff();
+ if (max>scale)
+ {
+ ssq = ssq * ei_abs2(scale/max);
+ scale = max;
+ invScale = Scalar(1)/scale;
+ }
+ // TODO if the max is much much smaller than the current scale,
+ // then we can neglect this sub vector
+ ssq += (bl*invScale).squaredNorm();
+}
+
+/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
+ * This version use a blockwise two passes algorithm:
+ * 1 - find the absolute largest coefficient \c s
+ * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
+ *
+ * For architecture/scalar types supporting vectorization, this version
+ * is faster than blueNorm(). Otherwise the blueNorm() is much faster.
+ *
+ * \sa norm(), blueNorm(), hypotNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::stableNorm() const
+{
+ const int blockSize = 4096;
+ RealScalar scale = 0;
+ RealScalar invScale;
+ RealScalar ssq = 0; // sum of square
+ enum {
+ Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? ForceAligned : AsRequested
+ };
+ int n = size();
+ int bi=0;
+ if ((int(Flags)&DirectAccessBit) && !(int(Flags)&AlignedBit))
+ {
+ bi = ei_alignmentOffset(&const_cast_derived().coeffRef(0), n);
+ if (bi>0)
+ ei_stable_norm_kernel(start(bi), ssq, scale, invScale);
+ }
+ for (; bi<n; bi+=blockSize)
+ ei_stable_norm_kernel(VectorBlock<Derived,Dynamic,Alignment>(derived(),bi,std::min(blockSize, n - bi)), ssq, scale, invScale);
+ return scale * ei_sqrt(ssq);
+}
+
+/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
+ * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
+ * ACM TOMS, Vol 4, Issue 1, 1978.
+ *
+ * For architecture/scalar types without vectorization, this version
+ * is much faster than stableNorm(). Otherwise the stableNorm() is faster.
+ *
+ * \sa norm(), stableNorm(), hypotNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::blueNorm() const
+{
+ static int nmax = -1;
+ static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
+ if(nmax <= 0)
+ {
+ int nbig, ibeta, it, iemin, iemax, iexp;
+ RealScalar abig, eps;
+ // This program calculates the machine-dependent constants
+ // bl, b2, slm, s2m, relerr overfl, nmax
+ // from the "basic" machine-dependent numbers
+ // nbig, ibeta, it, iemin, iemax, rbig.
+ // The following define the basic machine-dependent constants.
+ // For portability, the PORT subprograms "ilmaeh" and "rlmach"
+ // are used. For any specific computer, each of the assignment
+ // statements can be replaced
+ nbig = std::numeric_limits<int>::max(); // largest integer
+ ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
+ it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
+ iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
+ iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
+ rbig = std::numeric_limits<RealScalar>::max(); // largest floating-point number
+
+ // Check the basic machine-dependent constants.
+ if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5)
+ || (it<=4 && ibeta <= 3 ) || it<2)
+ {
+ ei_assert(false && "the algorithm cannot be guaranteed on this computer");
+ }
+ iexp = -((1-iemin)/2);
+ b1 = std::pow(ibeta, iexp); // lower boundary of midrange
+ iexp = (iemax + 1 - it)/2;
+ b2 = std::pow(ibeta,iexp); // upper boundary of midrange
+
+ iexp = (2-iemin)/2;
+ s1m = std::pow(ibeta,iexp); // scaling factor for lower range
+ iexp = - ((iemax+it)/2);
+ s2m = std::pow(ibeta,iexp); // scaling factor for upper range
+
+ overfl = rbig*s2m; // overfow boundary for abig
+ eps = std::pow(ibeta, 1-it);
+ relerr = ei_sqrt(eps); // tolerance for neglecting asml
+ abig = 1.0/eps - 1.0;
+ if (RealScalar(nbig)>abig) nmax = abig; // largest safe n
+ else nmax = nbig;
+ }
+ int n = size();
+ RealScalar ab2 = b2 / RealScalar(n);
+ RealScalar asml = RealScalar(0);
+ RealScalar amed = RealScalar(0);
+ RealScalar abig = RealScalar(0);
+ for(int j=0; j<n; ++j)
+ {
+ RealScalar ax = ei_abs(coeff(j));
+ if(ax > ab2) abig += ei_abs2(ax*s2m);
+ else if(ax < b1) asml += ei_abs2(ax*s1m);
+ else amed += ei_abs2(ax);
+ }
+ if(abig > RealScalar(0))
+ {
+ abig = ei_sqrt(abig);
+ if(abig > overfl)
+ {
+ ei_assert(false && "overflow");
+ return rbig;
+ }
+ if(amed > RealScalar(0))
+ {
+ abig = abig/s2m;
+ amed = ei_sqrt(amed);
+ }
+ else
+ return abig/s2m;
+ }
+ else if(asml > RealScalar(0))
+ {
+ if (amed > RealScalar(0))
+ {
+ abig = ei_sqrt(amed);
+ amed = ei_sqrt(asml) / s1m;
+ }
+ else
+ return ei_sqrt(asml)/s1m;
+ }
+ else
+ return ei_sqrt(amed);
+ asml = std::min(abig, amed);
+ abig = std::max(abig, amed);
+ if(asml <= abig*relerr)
+ return abig;
+ else
+ return abig * ei_sqrt(RealScalar(1) + ei_abs2(asml/abig));
+}
+
+/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
+ * This version use a concatenation of hypot() calls, and it is very slow.
+ *
+ * \sa norm(), stableNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::hypotNorm() const
+{
+ return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
+}
+
+#endif // EIGEN_STABLENORM_H