aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--Eigen/Core1
-rw-r--r--Eigen/src/Core/Block.h4
-rw-r--r--Eigen/src/Core/Dot.h125
-rw-r--r--Eigen/src/Core/Functors.h3
-rw-r--r--Eigen/src/Core/MatrixBase.h1
-rw-r--r--Eigen/src/Core/StableNorm.h194
-rw-r--r--bench/bench_norm.cpp106
-rw-r--r--test/adjoint.cpp4
8 files changed, 256 insertions, 182 deletions
diff --git a/Eigen/Core b/Eigen/Core
index a7a2a768a..ad606ec38 100644
--- a/Eigen/Core
+++ b/Eigen/Core
@@ -161,6 +161,7 @@ namespace Eigen {
#include "src/Core/CwiseNullaryOp.h"
#include "src/Core/CwiseUnaryView.h"
#include "src/Core/Dot.h"
+#include "src/Core/StableNorm.h"
#include "src/Core/DiagonalProduct.h"
#include "src/Core/SolveTriangular.h"
#include "src/Core/MapBase.h"
diff --git a/Eigen/src/Core/Block.h b/Eigen/src/Core/Block.h
index 382518696..ffc0707ee 100644
--- a/Eigen/src/Core/Block.h
+++ b/Eigen/src/Core/Block.h
@@ -33,8 +33,8 @@
* \param MatrixType the type of the object in which we are taking a block
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
- * \param _PacketAccess allows to enforce aligned loads and stores if set to ForceAligned.
- * The default is AsRequested. This parameter is internaly used by Eigen
+ * \param _PacketAccess allows to enforce aligned loads and stores if set to \b ForceAligned.
+ * The default is \b AsRequested. This parameter is internaly used by Eigen
* in expressions such as \code mat.block() += other; \endcode and most of
* the time this is the only way it is used.
* \param _DirectAccessStatus \internal used for partial specialization
diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h
index d97f5837f..9e84d72bb 100644
--- a/Eigen/src/Core/Dot.h
+++ b/Eigen/src/Core/Dot.h
@@ -292,131 +292,6 @@ inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<
return ei_sqrt(squaredNorm());
}
-/** \returns the \em l2 norm of \c *this using a numerically more stable
- * algorithm.
- *
- * \sa norm(), dot(), squaredNorm(), blueNorm()
- */
-template<typename Derived>
-inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
-MatrixBase<Derived>::stableNorm() const
-{
- return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
-}
-
-/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
- * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
- * ACM TOMS, Vol 4, Issue 1, 1978.
- *
- * \sa norm(), dot(), squaredNorm(), stableNorm()
- */
-template<typename Derived>
-inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
-MatrixBase<Derived>::blueNorm() const
-{
- static int nmax = -1;
- static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
- int n;
- Scalar ax, abig, amed, asml;
-
- if(nmax <= 0)
- {
- int nbig, ibeta, it, iemin, iemax, iexp;
- Scalar abig, eps;
- // This program calculates the machine-dependent constants
- // bl, b2, slm, s2m, relerr overfl, nmax
- // from the "basic" machine-dependent numbers
- // nbig, ibeta, it, iemin, iemax, rbig.
- // The following define the basic machine-dependent constants.
- // For portability, the PORT subprograms "ilmaeh" and "rlmach"
- // are used. For any specific computer, each of the assignment
- // statements can be replaced
- nbig = std::numeric_limits<int>::max(); // largest integer
- ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base; // base for floating-point numbers
- it = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
- iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent
- iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent
- rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number
-
- // Check the basic machine-dependent constants.
- if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5)
- || (it<=4 && ibeta <= 3 ) || it<2)
- {
- ei_assert(false && "the algorithm cannot be guaranteed on this computer");
- }
- iexp = -((1-iemin)/2);
- b1 = std::pow(ibeta, iexp); // lower boundary of midrange
- iexp = (iemax + 1 - it)/2;
- b2 = std::pow(ibeta,iexp); // upper boundary of midrange
-
- iexp = (2-iemin)/2;
- s1m = std::pow(ibeta,iexp); // scaling factor for lower range
- iexp = - ((iemax+it)/2);
- s2m = std::pow(ibeta,iexp); // scaling factor for upper range
-
- overfl = rbig*s2m; // overfow boundary for abig
- eps = std::pow(ibeta, 1-it);
- relerr = ei_sqrt(eps); // tolerance for neglecting asml
- abig = 1.0/eps - 1.0;
- if (Scalar(nbig)>abig) nmax = abig; // largest safe n
- else nmax = nbig;
- }
- n = size();
- if(n==0)
- return 0;
- asml = Scalar(0);
- amed = Scalar(0);
- abig = Scalar(0);
- for(int j=0; j<n; ++j)
- {
- ax = ei_abs(coeff(j));
- if(ax > b2) abig += ei_abs2(ax*s2m);
- else if(ax < b1) asml += ei_abs2(ax*s1m);
- else amed += ei_abs2(ax);
- }
- if(abig > Scalar(0))
- {
- abig = ei_sqrt(abig);
- if(abig > overfl)
- {
- ei_assert(false && "overflow");
- return rbig;
- }
- if(amed > Scalar(0))
- {
- abig = abig/s2m;
- amed = ei_sqrt(amed);
- }
- else
- {
- return abig/s2m;
- }
-
- }
- else if(asml > Scalar(0))
- {
- if (amed > Scalar(0))
- {
- abig = ei_sqrt(amed);
- amed = ei_sqrt(asml) / s1m;
- }
- else
- {
- return ei_sqrt(asml)/s1m;
- }
- }
- else
- {
- return ei_sqrt(amed);
- }
- asml = std::min(abig, amed);
- abig = std::max(abig, amed);
- if(asml <= abig*relerr)
- return abig;
- else
- return abig * ei_sqrt(Scalar(1) + ei_abs2(asml/abig));
-}
-
/** \returns an expression of the quotient of *this by its own norm.
*
* \only_for_vectors
diff --git a/Eigen/src/Core/Functors.h b/Eigen/src/Core/Functors.h
index 89badb353..a4c9604df 100644
--- a/Eigen/src/Core/Functors.h
+++ b/Eigen/src/Core/Functors.h
@@ -124,9 +124,6 @@ template<typename Scalar> struct ei_scalar_hypot_op EIGEN_EMPTY_STRUCT {
// typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
{
-// typedef typename NumTraits<T>::Real RealScalar;
-// RealScalar _x = ei_abs(x);
-// RealScalar _y = ei_abs(y);
Scalar p = std::max(_x, _y);
Scalar q = std::min(_x, _y);
Scalar qp = q/p;
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index b8273ca22..5298ae271 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -384,6 +384,7 @@ template<typename Derived> class MatrixBase
RealScalar norm() const;
RealScalar stableNorm() const;
RealScalar blueNorm() const;
+ RealScalar hypotNorm() const;
const PlainMatrixType normalized() const;
void normalize();
diff --git a/Eigen/src/Core/StableNorm.h b/Eigen/src/Core/StableNorm.h
new file mode 100644
index 000000000..383c64f01
--- /dev/null
+++ b/Eigen/src/Core/StableNorm.h
@@ -0,0 +1,194 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_STABLENORM_H
+#define EIGEN_STABLENORM_H
+
+template<typename ExpressionType, typename Scalar>
+inline void ei_stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
+{
+ Scalar max = bl.cwise().abs().maxCoeff();
+ if (max>scale)
+ {
+ ssq = ssq * ei_abs2(scale/max);
+ scale = max;
+ invScale = Scalar(1)/scale;
+ }
+ // TODO if the max is much much smaller than the current scale,
+ // then we can neglect this sub vector
+ ssq += (bl*invScale).squaredNorm();
+}
+
+/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
+ * This version use a blockwise two passes algorithm:
+ * 1 - find the absolute largest coefficient \c s
+ * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
+ *
+ * For architecture/scalar types supporting vectorization, this version
+ * is faster than blueNorm(). Otherwise the blueNorm() is much faster.
+ *
+ * \sa norm(), blueNorm(), hypotNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::stableNorm() const
+{
+ const int blockSize = 4096;
+ RealScalar scale = 0;
+ RealScalar invScale;
+ RealScalar ssq = 0; // sum of square
+ enum {
+ Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? ForceAligned : AsRequested
+ };
+ int n = size();
+ int bi=0;
+ if ((int(Flags)&DirectAccessBit) && !(int(Flags)&AlignedBit))
+ {
+ bi = ei_alignmentOffset(&const_cast_derived().coeffRef(0), n);
+ if (bi>0)
+ ei_stable_norm_kernel(start(bi), ssq, scale, invScale);
+ }
+ for (; bi<n; bi+=blockSize)
+ ei_stable_norm_kernel(VectorBlock<Derived,Dynamic,Alignment>(derived(),bi,std::min(blockSize, n - bi)), ssq, scale, invScale);
+ return scale * ei_sqrt(ssq);
+}
+
+/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
+ * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
+ * ACM TOMS, Vol 4, Issue 1, 1978.
+ *
+ * For architecture/scalar types without vectorization, this version
+ * is much faster than stableNorm(). Otherwise the stableNorm() is faster.
+ *
+ * \sa norm(), stableNorm(), hypotNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::blueNorm() const
+{
+ static int nmax = -1;
+ static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
+ if(nmax <= 0)
+ {
+ int nbig, ibeta, it, iemin, iemax, iexp;
+ RealScalar abig, eps;
+ // This program calculates the machine-dependent constants
+ // bl, b2, slm, s2m, relerr overfl, nmax
+ // from the "basic" machine-dependent numbers
+ // nbig, ibeta, it, iemin, iemax, rbig.
+ // The following define the basic machine-dependent constants.
+ // For portability, the PORT subprograms "ilmaeh" and "rlmach"
+ // are used. For any specific computer, each of the assignment
+ // statements can be replaced
+ nbig = std::numeric_limits<int>::max(); // largest integer
+ ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
+ it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
+ iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
+ iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
+ rbig = std::numeric_limits<RealScalar>::max(); // largest floating-point number
+
+ // Check the basic machine-dependent constants.
+ if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5)
+ || (it<=4 && ibeta <= 3 ) || it<2)
+ {
+ ei_assert(false && "the algorithm cannot be guaranteed on this computer");
+ }
+ iexp = -((1-iemin)/2);
+ b1 = std::pow(ibeta, iexp); // lower boundary of midrange
+ iexp = (iemax + 1 - it)/2;
+ b2 = std::pow(ibeta,iexp); // upper boundary of midrange
+
+ iexp = (2-iemin)/2;
+ s1m = std::pow(ibeta,iexp); // scaling factor for lower range
+ iexp = - ((iemax+it)/2);
+ s2m = std::pow(ibeta,iexp); // scaling factor for upper range
+
+ overfl = rbig*s2m; // overfow boundary for abig
+ eps = std::pow(ibeta, 1-it);
+ relerr = ei_sqrt(eps); // tolerance for neglecting asml
+ abig = 1.0/eps - 1.0;
+ if (RealScalar(nbig)>abig) nmax = abig; // largest safe n
+ else nmax = nbig;
+ }
+ int n = size();
+ RealScalar ab2 = b2 / RealScalar(n);
+ RealScalar asml = RealScalar(0);
+ RealScalar amed = RealScalar(0);
+ RealScalar abig = RealScalar(0);
+ for(int j=0; j<n; ++j)
+ {
+ RealScalar ax = ei_abs(coeff(j));
+ if(ax > ab2) abig += ei_abs2(ax*s2m);
+ else if(ax < b1) asml += ei_abs2(ax*s1m);
+ else amed += ei_abs2(ax);
+ }
+ if(abig > RealScalar(0))
+ {
+ abig = ei_sqrt(abig);
+ if(abig > overfl)
+ {
+ ei_assert(false && "overflow");
+ return rbig;
+ }
+ if(amed > RealScalar(0))
+ {
+ abig = abig/s2m;
+ amed = ei_sqrt(amed);
+ }
+ else
+ return abig/s2m;
+ }
+ else if(asml > RealScalar(0))
+ {
+ if (amed > RealScalar(0))
+ {
+ abig = ei_sqrt(amed);
+ amed = ei_sqrt(asml) / s1m;
+ }
+ else
+ return ei_sqrt(asml)/s1m;
+ }
+ else
+ return ei_sqrt(amed);
+ asml = std::min(abig, amed);
+ abig = std::max(abig, amed);
+ if(asml <= abig*relerr)
+ return abig;
+ else
+ return abig * ei_sqrt(RealScalar(1) + ei_abs2(asml/abig));
+}
+
+/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
+ * This version use a concatenation of hypot() calls, and it is very slow.
+ *
+ * \sa norm(), stableNorm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
+MatrixBase<Derived>::hypotNorm() const
+{
+ return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
+}
+
+#endif // EIGEN_STABLENORM_H
diff --git a/bench/bench_norm.cpp b/bench/bench_norm.cpp
index 8e4fefdd7..7a3dc2e68 100644
--- a/bench/bench_norm.cpp
+++ b/bench/bench_norm.cpp
@@ -13,7 +13,7 @@ EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(const T& v)
template<typename T>
EIGEN_DONT_INLINE typename T::Scalar hypotNorm(const T& v)
{
- return v.stableNorm();
+ return v.hypotNorm();
}
template<typename T>
@@ -56,23 +56,7 @@ EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v)
template<typename T>
EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v)
{
- const int blockSize = 4096;
- typedef typename T::Scalar Scalar;
- Scalar s = 0;
- Scalar ssq = 0;
- for (int bi=0; bi<v.size(); bi+=blockSize)
- {
- int r = std::min(blockSize, v.size() - bi);
- Eigen::Block<typename ei_cleantype<T>::type,Eigen::Dynamic,1,Eigen::ForceAligned> sv(v,bi,0,r,1);
- Scalar m = sv.cwise().abs().maxCoeff();
- if (m>s)
- {
- ssq = ssq * ei_abs2(s/m);
- s = m;
- }
- ssq += (sv/s).squaredNorm();
- }
- return s*ei_sqrt(ssq);
+ return v.stableNorm();
}
template<typename T>
@@ -163,6 +147,19 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
Packet ax_s1m = ei_pmul(ax,ps1m);
Packet maskBig = ei_plt(pb2,ax);
Packet maskSml = ei_plt(ax,pb1);
+
+// Packet maskMed = ei_pand(maskSml,maskBig);
+// Packet scale = ei_pset1(Scalar(0));
+// scale = ei_por(scale, ei_pand(maskBig,ps2m));
+// scale = ei_por(scale, ei_pand(maskSml,ps1m));
+// scale = ei_por(scale, ei_pandnot(ei_pset1(Scalar(1)),maskMed));
+// ax = ei_pmul(ax,scale);
+// ax = ei_pmul(ax,ax);
+// pabig = ei_padd(pabig, ei_pand(maskBig, ax));
+// pasml = ei_padd(pasml, ei_pand(maskSml, ax));
+// pamed = ei_padd(pamed, ei_pandnot(ax,maskMed));
+
+
pabig = ei_padd(pabig, ei_pand(maskBig, ei_pmul(ax_s2m,ax_s2m)));
pasml = ei_padd(pasml, ei_pand(maskSml, ei_pmul(ax_s1m,ax_s1m)));
pamed = ei_padd(pamed, ei_pandnot(ei_pmul(ax,ax),ei_pand(maskSml,maskBig)));
@@ -215,7 +212,7 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
}
#define BENCH_PERF(NRM) { \
- Eigen::BenchTimer tf, td; tf.reset(); td.reset();\
+ Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\
for (int k=0; k<tries; ++k) { \
tf.start(); \
for (int i=0; i<iters; ++i) NRM(vf); \
@@ -226,7 +223,12 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
for (int i=0; i<iters; ++i) NRM(vd); \
td.stop(); \
} \
- std::cout << #NRM << "\t" << tf.value() << " " << td.value() << "\n"; \
+ for (int k=0; k<std::max(1,tries/3); ++k) { \
+ tcf.start(); \
+ for (int i=0; i<iters; ++i) NRM(vcf); \
+ tcf.stop(); \
+ } \
+ std::cout << #NRM << "\t" << tf.value() << " " << td.value() << " " << tcf.value() << "\n"; \
}
void check_accuracy(double basef, double based, int s)
@@ -263,7 +265,7 @@ void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s)
std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n";
std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n";
- std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n";
+// std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n";
}
int main(int argc, char** argv)
@@ -273,34 +275,7 @@ int main(int argc, char** argv)
double y = 1.1345743233455785456788e12 * ei_random<double>();
VectorXf v = VectorXf::Ones(1024) * y;
- std::cerr << "Performance (out of cache):\n";
- {
- int iters = 1;
- VectorXf vf = VectorXf::Random(1024*1024*32) * y;
- VectorXd vd = VectorXd::Random(1024*1024*32) * y;
- BENCH_PERF(sqsumNorm);
- BENCH_PERF(blueNorm);
- BENCH_PERF(pblueNorm);
- BENCH_PERF(lapackNorm);
- BENCH_PERF(hypotNorm);
- BENCH_PERF(twopassNorm);
- BENCH_PERF(bl2passNorm);
- }
-
- std::cerr << "\nPerformance (in cache):\n";
- {
- int iters = 100000;
- VectorXf vf = VectorXf::Random(512) * y;
- VectorXd vd = VectorXd::Random(512) * y;
- BENCH_PERF(sqsumNorm);
- BENCH_PERF(blueNorm);
- BENCH_PERF(pblueNorm);
- BENCH_PERF(lapackNorm);
- BENCH_PERF(hypotNorm);
- BENCH_PERF(twopassNorm);
- BENCH_PERF(bl2passNorm);
- }
-return 0;
+// return 0;
int s = 10000;
double basef_ok = 1.1345743233455785456788e15;
double based_ok = 1.1345743233455785456788e95;
@@ -317,7 +292,7 @@ return 0;
check_accuracy(basef_ok, based_ok, s);
std::cerr << "\nUnderflow:\n";
- check_accuracy(basef_under, based_under, 1);
+ check_accuracy(basef_under, based_under, s);
std::cerr << "\nOverflow:\n";
check_accuracy(basef_over, based_over, s);
@@ -335,4 +310,35 @@ return 0;
check_accuracy_var(-27,20,-302,-190,s);
std::cout << "\n";
}
+
+ std::cout.precision(4);
+ std::cerr << "Performance (out of cache):\n";
+ {
+ int iters = 1;
+ VectorXf vf = VectorXf::Random(1024*1024*32) * y;
+ VectorXd vd = VectorXd::Random(1024*1024*32) * y;
+ VectorXcf vcf = VectorXcf::Random(1024*1024*32) * y;
+ BENCH_PERF(sqsumNorm);
+ BENCH_PERF(blueNorm);
+// BENCH_PERF(pblueNorm);
+// BENCH_PERF(lapackNorm);
+// BENCH_PERF(hypotNorm);
+// BENCH_PERF(twopassNorm);
+ BENCH_PERF(bl2passNorm);
+ }
+
+ std::cerr << "\nPerformance (in cache):\n";
+ {
+ int iters = 100000;
+ VectorXf vf = VectorXf::Random(512) * y;
+ VectorXd vd = VectorXd::Random(512) * y;
+ VectorXcf vcf = VectorXcf::Random(512) * y;
+ BENCH_PERF(sqsumNorm);
+ BENCH_PERF(blueNorm);
+// BENCH_PERF(pblueNorm);
+// BENCH_PERF(lapackNorm);
+// BENCH_PERF(hypotNorm);
+// BENCH_PERF(twopassNorm);
+ BENCH_PERF(bl2passNorm);
+ }
}
diff --git a/test/adjoint.cpp b/test/adjoint.cpp
index 1f4aa7427..47e1bd740 100644
--- a/test/adjoint.cpp
+++ b/test/adjoint.cpp
@@ -76,8 +76,8 @@ template<typename MatrixType> void adjoint(const MatrixType& m)
{
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
VERIFY_IS_APPROX(v1.norm(), v1.stableNorm());
- // NOTE disabled because it currently compiles for float and double only
- // VERIFY_IS_APPROX(v1.blueNorm(), v1.stableNorm());
+ VERIFY_IS_APPROX(v1.blueNorm(), v1.stableNorm());
+ VERIFY_IS_APPROX(v1.hypotNorm(), v1.stableNorm());
}
// check compatibility of dot and adjoint