diff options
author | Gael Guennebaud <g.gael@free.fr> | 2010-11-04 09:58:22 +0100 |
---|---|---|
committer | Gael Guennebaud <g.gael@free.fr> | 2010-11-04 09:58:22 +0100 |
commit | 15e8ad686c3c10a7730c1bb72f7dae1e2f46719f (patch) | |
tree | 240d8d72a1f6fd6eb40f33492ec72a859c05132b /unsupported/test | |
parent | 5a4f77716d1f925229e5656282d6d76e22ab8698 (diff) |
add a minimum degree ordering routine based on CSparse (LGPL) and a new built-in sparse cholesky decomposition
Diffstat (limited to 'unsupported/test')
-rw-r--r-- | unsupported/test/sparse_ldlt.cpp | 131 |
1 files changed, 109 insertions, 22 deletions
diff --git a/unsupported/test/sparse_ldlt.cpp b/unsupported/test/sparse_ldlt.cpp index 275839670..035e21123 100644 --- a/unsupported/test/sparse_ldlt.cpp +++ b/unsupported/test/sparse_ldlt.cpp @@ -31,6 +31,8 @@ template<typename Scalar> void sparse_ldlt(int rows, int cols) { + static bool odd = true; + odd = !odd; double density = std::max(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; @@ -42,41 +44,126 @@ template<typename Scalar> void sparse_ldlt(int rows, int cols) DenseVector refX(cols), x(cols); initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0); - for(int i=0; i<rows; ++i) - m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i))); - - refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b); + + SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows); + DenseMatrix refMat3 = refMat2 * refMat2.adjoint(); + + refX = refMat3.template selfadjointView<Upper>().ldlt().solve(b); typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix; x = b; - SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2); + SparseLDLT<SparseSelfAdjointMatrix> ldlt(m3); if (ldlt.succeeded()) ldlt.solveInPlace(x); else std::cerr << "warning LDLT failed\n"; - VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b); +// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b); VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); + + + + // new Simplicial LLT + + + // new API + { + SparseMatrix<Scalar> m2(rows, cols); + DenseMatrix refMat2(rows, cols); -#ifdef EIGEN_CHOLMOD_SUPPORT - x = b; - SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m2); - if (ldlt2.succeeded()) - ldlt2.solveInPlace(x); - else - std::cerr << "warning LDLT failed\n"; + DenseVector b = DenseVector::Random(cols); + DenseVector ref_x(cols), x(cols); + DenseMatrix B = DenseMatrix::Random(rows,cols); + DenseMatrix ref_X(rows,cols), X(rows,cols); - VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b); - VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace"); + initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0); + for(int i=0; i<rows; ++i) + m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i))); + + + SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows); + DenseMatrix refMat3 = refMat2 * refMat2.adjoint(); + + m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0); + m3_up.template selfadjointView<Upper>().rankUpdate(m2,0); + + // with a single vector as the rhs + ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b); - SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt3(m2); - if (ldlt3.succeeded()) - x = ldlt3.solve(b); - else - std::cerr << "warning LDLT failed\n"; + x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b); + VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, single dense rhs"); + + x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b); + VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, single dense rhs"); + +// x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3_lo).solve(b); +// VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, lower only, single dense rhs"); + +// x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3_up).solve(b); +// VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, upper only, single dense rhs"); + + + // with multiple rhs + ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B); + + X = SimplicialCholesky<SparseMatrix<Scalar>, Lower>()/*.setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt)*/.compute(m3).solve(B); + VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, multiple dense rhs"); + +// X = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B); +// VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, multiple dense rhs"); + + +// // with a sparse rhs +// SparseMatrix<Scalar> spB(rows,cols), spX(rows,cols); +// B.diagonal().array() += 1; +// spB = B.sparseView(0.5,1); +// +// ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB)); - VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b); - VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve"); +// spX = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3).solve(spB); +// VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs"); +// +// spX = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3).solve(spB); +// VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs"); + } + + + +// for(int i=0; i<rows; ++i) +// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i))); +// +// refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b); +// typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix; +// x = b; +// SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2); +// if (ldlt.succeeded()) +// ldlt.solveInPlace(x); +// else +// std::cerr << "warning LDLT failed\n"; +// +// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b); +// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); + +#ifdef EIGEN_CHOLMOD_SUPPORT +// x = b; +// SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m2); +// if (ldlt2.succeeded()) +// ldlt2.solveInPlace(x); +// else +// std::cerr << "warning LDLT failed\n"; +// +// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b); +// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace"); +// +// +// SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt3(m2); +// if (ldlt3.succeeded()) +// x = ldlt3.solve(b); +// else +// std::cerr << "warning LDLT failed\n"; +// +// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b); +// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve"); #endif } |