aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2010-11-04 09:58:22 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2010-11-04 09:58:22 +0100
commit15e8ad686c3c10a7730c1bb72f7dae1e2f46719f (patch)
tree240d8d72a1f6fd6eb40f33492ec72a859c05132b /unsupported
parent5a4f77716d1f925229e5656282d6d76e22ab8698 (diff)
add a minimum degree ordering routine based on CSparse (LGPL) and a new built-in sparse cholesky decomposition
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/SparseExtra6
-rw-r--r--unsupported/Eigen/src/SparseExtra/Amd.h487
-rw-r--r--unsupported/Eigen/src/SparseExtra/CholmodSupport.h54
-rw-r--r--unsupported/Eigen/src/SparseExtra/SimplicialCholesky.h457
-rw-r--r--unsupported/Eigen/src/SparseExtra/Solve.h82
-rw-r--r--unsupported/Eigen/src/SparseExtra/SparseLDLTLegacy.h (renamed from unsupported/Eigen/src/SparseExtra/SparseLDLT.h)42
-rw-r--r--unsupported/test/sparse_ldlt.cpp131
7 files changed, 1174 insertions, 85 deletions
diff --git a/unsupported/Eigen/SparseExtra b/unsupported/Eigen/SparseExtra
index 8b4afa3a8..45b154339 100644
--- a/unsupported/Eigen/SparseExtra
+++ b/unsupported/Eigen/SparseExtra
@@ -54,8 +54,12 @@ enum {
#include "src/misc/Solve.h"
#include "src/SparseExtra/RandomSetter.h"
+#include "src/SparseExtra/Solve.h"
+#include "src/SparseExtra/Amd.h"
+#include "src/SparseExtra/SimplicialCholesky.h"
+
#include "src/SparseExtra/SparseLLT.h"
-#include "src/SparseExtra/SparseLDLT.h"
+#include "src/SparseExtra/SparseLDLTLegacy.h"
#include "src/SparseExtra/SparseLU.h"
} // namespace Eigen
diff --git a/unsupported/Eigen/src/SparseExtra/Amd.h b/unsupported/Eigen/src/SparseExtra/Amd.h
new file mode 100644
index 000000000..a716305fd
--- /dev/null
+++ b/unsupported/Eigen/src/SparseExtra/Amd.h
@@ -0,0 +1,487 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+/*
+
+NOTE: this routine has been adapted from the CSparse library:
+
+Copyright (c) 2006, Timothy A. Davis.
+http://www.cise.ufl.edu/research/sparse/CSparse
+
+CSparse is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 2.1 of the License, or (at your option) any later version.
+
+CSparse is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+Lesser General Public License for more details.
+
+You should have received a copy of the GNU Lesser General Public
+License along with this Module; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+
+*/
+
+#ifndef EIGEN_SPARSE_AMD_H
+#define EIGEN_SPARSE_AMD_H
+
+namespace internal {
+
+
+#define CS_FLIP(i) (-(i)-2)
+#define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i))
+#define CS_MARKED(w,j) (w[j] < 0)
+#define CS_MARK(w,j) { w[j] = CS_FLIP (w[j]); }
+
+/* clear w */
+template<typename Index>
+static int cs_wclear (Index mark, Index lemax, Index *w, Index n)
+{
+ Index k;
+ if(mark < 2 || (mark + lemax < 0))
+ {
+ for(k = 0; k < n; k++)
+ if(w[k] != 0)
+ w[k] = 1;
+ mark = 2;
+ }
+ return (mark); /* at this point, w[0..n-1] < mark holds */
+}
+
+/* depth-first search and postorder of a tree rooted at node j */
+template<typename Index>
+Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack)
+{
+ int i, p, top = 0;
+ if(!head || !next || !post || !stack) return (-1); /* check inputs */
+ stack[0] = j; /* place j on the stack */
+ while (top >= 0) /* while (stack is not empty) */
+ {
+ p = stack[top]; /* p = top of stack */
+ i = head[p]; /* i = youngest child of p */
+ if(i == -1)
+ {
+ top--; /* p has no unordered children left */
+ post[k++] = p; /* node p is the kth postordered node */
+ }
+ else
+ {
+ head[p] = next[i]; /* remove i from children of p */
+ stack[++top] = i; /* start dfs on child node i */
+ }
+ }
+ return k;
+}
+
+/** keeps off-diagonal entries; drops diagonal entries */
+template<typename Index, typename Scalar>
+struct keep_diag {
+ inline bool operator() (const Index& row, const Index& col, const Scalar&) const
+ {
+ return row!=col;
+ }
+};
+
+/** p = amd(A+A') if symmetric is true, or amd(A'A) otherwise */
+template<typename Scalar, int Options, typename Index>
+int *minimum_degree_ordering(int order, const SparseMatrix<Scalar,Options,Index>& A) /* order 0:natural, 1:Chol, 2:LU, 3:QR */
+{
+ typedef SparseMatrix<Scalar,ColMajor,Index> CCS;
+
+ int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
+ k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
+ ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t;
+ unsigned int h;
+ /* --- Construct matrix C ----------------------------------------------- */
+ if(order <= 0 || order > 3) return (NULL); /* check */
+
+ Index m = A.rows();
+ Index n = A.cols();
+ dense = std::max<Index> (16, 10 * sqrt ((double) n)); /* find dense threshold */
+ dense = std::min<Index> (n-2, dense);
+ CCS C;
+ if(order == 1 && n == m) // Cholesky
+ {
+ C = A + SparseMatrix<Scalar,Options,Index>(A.adjoint());
+ }
+ else if(order == 2) // LU
+ {
+ CCS AT = A.adjoint();
+ // drop dense columns from AT
+ Index* ATp = AT._outerIndexPtr();
+ Index* ATi = AT._innerIndexPtr();
+ Index p2;
+ Index j;
+ for(p2 = 0, j = 0; j < m; j++)
+ {
+ Index p = ATp[j]; // column j of AT starts here
+ ATp[j] = p2; // new column j starts here
+ if(ATp[j+1] - p > dense) continue; // skip dense col j
+ for(; p < ATp[j+1]; p++)
+ ATi[p2++] = ATi[p];
+ }
+ ATp[m] = p2; // finalize AT
+ // TODO this could be implemented using a sparse filter expression
+ // TODO do a cheap selfadjoint rank update
+ C = AT * AT.adjoint(); // C=A'*A with no dense rows
+ }
+ else // QR
+ {
+ C = A.adjoint() * A;
+ }
+
+ C.prune(keep_diag<Index,Scalar>());
+
+
+ Index cnz = A.nonZeros();
+ Index* P = new Index[n+1]; /* allocate result */
+ t = cnz + cnz/5 + 2*n; /* add elbow room to C */
+ C.resizeNonZeros(t);
+
+ Index* W = new Index[8*(n+1)]; /* get workspace */
+ Index* len = W;
+ Index* nv = W + (n+1);
+ Index* next = W + 2*(n+1);
+ Index* head = W + 3*(n+1);
+ Index* elen = W + 4*(n+1);
+ Index* degree = W + 5*(n+1);
+ Index* w = W + 6*(n+1);
+ Index* hhead = W + 7*(n+1);
+ Index* last = P; /* use P as workspace for last */
+
+ /* --- Initialize quotient graph ---------------------------------------- */
+ Index* Cp = C._outerIndexPtr();
+ Index* Ci = C._innerIndexPtr();
+ for(k = 0; k < n; k++)
+ len[k] = Cp[k+1] - Cp[k];
+ len[n] = 0;
+ nzmax = t;
+
+ for(i = 0; i <= n; i++)
+ {
+ head[i] = -1; // degree list i is empty
+ last[i] = -1;
+ next[i] = -1;
+ hhead[i] = -1; // hash list i is empty
+ nv[i] = 1; // node i is just one node
+ w[i] = 1; // node i is alive
+ elen[i] = 0; // Ek of node i is empty
+ degree[i] = len[i]; // degree of node i
+ }
+ mark = cs_wclear (0, 0, w, n); /* clear w */
+ elen[n] = -2; /* n is a dead element */
+ Cp[n] = -1; /* n is a root of assembly tree */
+ w[n] = 0; /* n is a dead element */
+
+ /* --- Initialize degree lists ------------------------------------------ */
+ for(i = 0; i < n; i++)
+ {
+ d = degree[i];
+ if(d == 0) /* node i is empty */
+ {
+ elen[i] = -2; /* element i is dead */
+ nel++;
+ Cp[i] = -1; /* i is a root of assembly tree */
+ w[i] = 0;
+ }
+ else if(d > dense) /* node i is dense */
+ {
+ nv[i] = 0; /* absorb i into element n */
+ elen[i] = -1; /* node i is dead */
+ nel++;
+ Cp[i] = CS_FLIP (n);
+ nv[n]++;
+ }
+ else
+ {
+ if(head[d] != -1) last[head[d]] = i;
+ next[i] = head[d]; /* put node i in degree list d */
+ head[d] = i;
+ }
+ }
+
+ while (nel < n) /* while (selecting pivots) do */
+ {
+ /* --- Select node of minimum approximate degree -------------------- */
+ for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++);
+ if(next[k] != -1) last[next[k]] = -1;
+ head[mindeg] = next[k]; /* remove k from degree list */
+ elenk = elen[k]; /* elenk = |Ek| */
+ nvk = nv[k]; /* # of nodes k represents */
+ nel += nvk; /* nv[k] nodes of A eliminated */
+
+ /* --- Garbage collection ------------------------------------------- */
+ if(elenk > 0 && cnz + mindeg >= nzmax)
+ {
+ for(j = 0; j < n; j++)
+ {
+ if((p = Cp[j]) >= 0) /* j is a live node or element */
+ {
+ Cp[j] = Ci[p]; /* save first entry of object */
+ Ci[p] = CS_FLIP (j); /* first entry is now CS_FLIP(j) */
+ }
+ }
+ for(q = 0, p = 0; p < cnz; ) /* scan all of memory */
+ {
+ if((j = CS_FLIP (Ci[p++])) >= 0) /* found object j */
+ {
+ Ci[q] = Cp[j]; /* restore first entry of object */
+ Cp[j] = q++; /* new pointer to object j */
+ for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
+ }
+ }
+ cnz = q; /* Ci[cnz...nzmax-1] now free */
+ }
+
+ /* --- Construct new element ---------------------------------------- */
+ dk = 0;
+ nv[k] = -nvk; /* flag k as in Lk */
+ p = Cp[k];
+ pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */
+ pk2 = pk1;
+ for(k1 = 1; k1 <= elenk + 1; k1++)
+ {
+ if(k1 > elenk)
+ {
+ e = k; /* search the nodes in k */
+ pj = p; /* list of nodes starts at Ci[pj]*/
+ ln = len[k] - elenk; /* length of list of nodes in k */
+ }
+ else
+ {
+ e = Ci[p++]; /* search the nodes in e */
+ pj = Cp[e];
+ ln = len[e]; /* length of list of nodes in e */
+ }
+ for(k2 = 1; k2 <= ln; k2++)
+ {
+ i = Ci[pj++];
+ if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */
+ dk += nvi; /* degree[Lk] += size of node i */
+ nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/
+ Ci[pk2++] = i; /* place i in Lk */
+ if(next[i] != -1) last[next[i]] = last[i];
+ if(last[i] != -1) /* remove i from degree list */
+ {
+ next[last[i]] = next[i];
+ }
+ else
+ {
+ head[degree[i]] = next[i];
+ }
+ }
+ if(e != k)
+ {
+ Cp[e] = CS_FLIP (k); /* absorb e into k */
+ w[e] = 0; /* e is now a dead element */
+ }
+ }
+ if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */
+ degree[k] = dk; /* external degree of k - |Lk\i| */
+ Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */
+ len[k] = pk2 - pk1;
+ elen[k] = -2; /* k is now an element */
+
+ /* --- Find set differences ----------------------------------------- */
+ mark = cs_wclear (mark, lemax, w, n); /* clear w if necessary */
+ for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */
+ {
+ i = Ci[pk];
+ if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */
+ nvi = -nv[i]; /* nv[i] was negated */
+ wnvi = mark - nvi;
+ for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */
+ {
+ e = Ci[p];
+ if(w[e] >= mark)
+ {
+ w[e] -= nvi; /* decrement |Le\Lk| */
+ }
+ else if(w[e] != 0) /* ensure e is a live element */
+ {
+ w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */
+ }
+ }
+ }
+
+ /* --- Degree update ------------------------------------------------ */
+ for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */
+ {
+ i = Ci[pk]; /* consider node i in Lk */
+ p1 = Cp[i];
+ p2 = p1 + elen[i] - 1;
+ pn = p1;
+ for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */
+ {
+ e = Ci[p];
+ if(w[e] != 0) /* e is an unabsorbed element */
+ {
+ dext = w[e] - mark; /* dext = |Le\Lk| */
+ if(dext > 0)
+ {
+ d += dext; /* sum up the set differences */
+ Ci[pn++] = e; /* keep e in Ei */
+ h += e; /* compute the hash of node i */
+ }
+ else
+ {
+ Cp[e] = CS_FLIP (k); /* aggressive absorb. e->k */
+ w[e] = 0; /* e is a dead element */
+ }
+ }
+ }
+ elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */
+ p3 = pn;
+ p4 = p1 + len[i];
+ for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */
+ {
+ j = Ci[p];
+ if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */
+ d += nvj; /* degree(i) += |j| */
+ Ci[pn++] = j; /* place j in node list of i */
+ h += j; /* compute hash for node i */
+ }
+ if(d == 0) /* check for mass elimination */
+ {
+ Cp[i] = CS_FLIP (k); /* absorb i into k */
+ nvi = -nv[i];
+ dk -= nvi; /* |Lk| -= |i| */
+ nvk += nvi; /* |k| += nv[i] */
+ nel += nvi;
+ nv[i] = 0;
+ elen[i] = -1; /* node i is dead */
+ }
+ else
+ {
+ degree[i] = std::min<Index> (degree[i], d); /* update degree(i) */
+ Ci[pn] = Ci[p3]; /* move first node to end */
+ Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */
+ Ci[p1] = k; /* add k as 1st element in of Ei */
+ len[i] = pn - p1 + 1; /* new len of adj. list of node i */
+ h %= n; /* finalize hash of i */
+ next[i] = hhead[h]; /* place i in hash bucket */
+ hhead[h] = i;
+ last[i] = h; /* save hash of i in last[i] */
+ }
+ } /* scan2 is done */
+ degree[k] = dk; /* finalize |Lk| */
+ lemax = std::max<Index>(lemax, dk);
+ mark = cs_wclear (mark+lemax, lemax, w, n); /* clear w */
+
+ /* --- Supernode detection ------------------------------------------ */
+ for(pk = pk1; pk < pk2; pk++)
+ {
+ i = Ci[pk];
+ if(nv[i] >= 0) continue; /* skip if i is dead */
+ h = last[i]; /* scan hash bucket of node i */
+ i = hhead[h];
+ hhead[h] = -1; /* hash bucket will be empty */
+ for(; i != -1 && next[i] != -1; i = next[i], mark++)
+ {
+ ln = len[i];
+ eln = elen[i];
+ for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
+ jlast = i;
+ for(j = next[i]; j != -1; ) /* compare i with all j */
+ {
+ ok = (len[j] == ln) && (elen[j] == eln);
+ for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
+ {
+ if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/
+ }
+ if(ok) /* i and j are identical */
+ {
+ Cp[j] = CS_FLIP (i); /* absorb j into i */
+ nv[i] += nv[j];
+ nv[j] = 0;
+ elen[j] = -1; /* node j is dead */
+ j = next[j]; /* delete j from hash bucket */
+ next[jlast] = j;
+ }
+ else
+ {
+ jlast = j; /* j and i are different */
+ j = next[j];
+ }
+ }
+ }
+ }
+
+ /* --- Finalize new element------------------------------------------ */
+ for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */
+ {
+ i = Ci[pk];
+ if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */
+ nv[i] = nvi; /* restore nv[i] */
+ d = degree[i] + dk - nvi; /* compute external degree(i) */
+ d = std::min<Index> (d, n - nel - nvi);
+ if(head[d] != -1) last[head[d]] = i;
+ next[i] = head[d]; /* put i back in degree list */
+ last[i] = -1;
+ head[d] = i;
+ mindeg = std::min<Index> (mindeg, d); /* find new minimum degree */
+ degree[i] = d;
+ Ci[p++] = i; /* place i in Lk */
+ }
+ nv[k] = nvk; /* # nodes absorbed into k */
+ if((len[k] = p-pk1) == 0) /* length of adj list of element k*/
+ {
+ Cp[k] = -1; /* k is a root of the tree */
+ w[k] = 0; /* k is now a dead element */
+ }
+ if(elenk != 0) cnz = p; /* free unused space in Lk */
+ }
+
+ /* --- Postordering ----------------------------------------------------- */
+ for(i = 0; i < n; i++) Cp[i] = CS_FLIP (Cp[i]);/* fix assembly tree */
+ for(j = 0; j <= n; j++) head[j] = -1;
+ for(j = n; j >= 0; j--) /* place unordered nodes in lists */
+ {
+ if(nv[j] > 0) continue; /* skip if j is an element */
+ next[j] = head[Cp[j]]; /* place j in list of its parent */
+ head[Cp[j]] = j;
+ }
+ for(e = n; e >= 0; e--) /* place elements in lists */
+ {
+ if(nv[e] <= 0) continue; /* skip unless e is an element */
+ if(Cp[e] != -1)
+ {
+ next[e] = head[Cp[e]]; /* place e in list of its parent */
+ head[Cp[e]] = e;
+ }
+ }
+ for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */
+ {
+ if(Cp[i] == -1) k = cs_tdfs (i, k, head, next, P, w);
+ }
+
+ delete[] W;
+ return P;
+}
+
+} // namespace internal
+
+#endif // EIGEN_SPARSE_AMD_H
diff --git a/unsupported/Eigen/src/SparseExtra/CholmodSupport.h b/unsupported/Eigen/src/SparseExtra/CholmodSupport.h
index b0f1c8e42..14f18d30f 100644
--- a/unsupported/Eigen/src/SparseExtra/CholmodSupport.h
+++ b/unsupported/Eigen/src/SparseExtra/CholmodSupport.h
@@ -27,56 +27,6 @@
namespace internal {
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base;
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval;
-
-template<typename DecompositionType, typename Rhs>
-struct traits<sparse_solve_retval_base<DecompositionType, Rhs> >
-{
- typedef typename DecompositionType::MatrixType MatrixType;
- typedef SparseMatrix<typename Rhs::Scalar, Rhs::Options, typename Rhs::Index> ReturnType;
-};
-
-template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base
- : public ReturnByValue<sparse_solve_retval_base<_DecompositionType, Rhs> >
-{
- typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
- typedef _DecompositionType DecompositionType;
- typedef ReturnByValue<sparse_solve_retval_base> Base;
- typedef typename Base::Index Index;
-
- sparse_solve_retval_base(const DecompositionType& dec, const Rhs& rhs)
- : m_dec(dec), m_rhs(rhs)
- {}
-
- inline Index rows() const { return m_dec.cols(); }
- inline Index cols() const { return m_rhs.cols(); }
- inline const DecompositionType& dec() const { return m_dec; }
- inline const RhsNestedCleaned& rhs() const { return m_rhs; }
-
- template<typename Dest> inline void evalTo(Dest& dst) const
- {
- static_cast<const sparse_solve_retval<DecompositionType,Rhs>*>(this)->evalTo(dst);
- }
-
- protected:
- const DecompositionType& m_dec;
- const typename Rhs::Nested m_rhs;
-};
-
-#define EIGEN_MAKE_SPARSE_SOLVE_HELPERS(DecompositionType,Rhs) \
- typedef typename DecompositionType::MatrixType MatrixType; \
- typedef typename MatrixType::Scalar Scalar; \
- typedef typename MatrixType::RealScalar RealScalar; \
- typedef typename MatrixType::Index Index; \
- typedef Eigen::internal::sparse_solve_retval_base<DecompositionType,Rhs> Base; \
- using Base::dec; \
- using Base::rhs; \
- using Base::rows; \
- using Base::cols; \
- sparse_solve_retval(const DecompositionType& dec, const Rhs& rhs) \
- : Base(dec, rhs) {}
-
template<typename Scalar, typename CholmodType>
void cholmod_configure_matrix(CholmodType& mat)
{
@@ -243,8 +193,8 @@ class CholmodDecomposition
cholmod_finish(&m_cholmod);
}
- int cols() const { return m_cholmodFactor->n; }
- int rows() const { return m_cholmodFactor->n; }
+ inline Index cols() const { return m_cholmodFactor->n; }
+ inline Index rows() const { return m_cholmodFactor->n; }
void setMode(CholmodMode mode)
{
diff --git a/unsupported/Eigen/src/SparseExtra/SimplicialCholesky.h b/unsupported/Eigen/src/SparseExtra/SimplicialCholesky.h
new file mode 100644
index 000000000..6b22d1502
--- /dev/null
+++ b/unsupported/Eigen/src/SparseExtra/SimplicialCholesky.h
@@ -0,0 +1,457 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+/*
+
+NOTE: the _symbolic, and _numeric functions has been adapted from
+ the LDL library:
+
+LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
+
+LDL License:
+
+ Your use or distribution of LDL or any modified version of
+ LDL implies that you agree to this License.
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+ USA
+
+ Permission is hereby granted to use or copy this program under the
+ terms of the GNU LGPL, provided that the Copyright, this License,
+ and the Availability of the original version is retained on all copies.
+ User documentation of any code that uses this code or any modified
+ version of this code must cite the Copyright, this License, the
+ Availability note, and "Used by permission." Permission to modify
+ the code and to distribute modified code is granted, provided the
+ Copyright, this License, and the Availability note are retained,
+ and a notice that the code was modified is included.
+ */
+
+#ifndef EIGEN_SIMPLICIAL_CHOLESKY_H
+#define EIGEN_SIMPLICIAL_CHOLESKY_H
+
+enum SimplicialCholeskyMode {
+ SimplicialCholeskyLLt,
+ SimplicialCholeskyLDLt
+};
+
+/** \brief A direct sparse Cholesky factorization
+ *
+ * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization.
+ * The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
+ * X and B can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ *
+ */
+template<typename _MatrixType, int _UpLo = Lower>
+class SimplicialCholesky
+{
+ public:
+ typedef _MatrixType MatrixType;
+ enum { UpLo = _UpLo };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef typename MatrixType::Index Index;
+ typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
+ typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType;
+
+ public:
+
+ SimplicialCholesky()
+ : m_info(Success), m_isInitialized(false), m_LDLt(true)
+ {}
+
+ SimplicialCholesky(const MatrixType& matrix)
+ : m_info(Success), m_isInitialized(false), m_LDLt(true)
+ {
+ compute(matrix);
+ }
+
+ ~SimplicialCholesky()
+ {
+ }
+
+ inline Index cols() const { return m_matrix.cols(); }
+ inline Index rows() const { return m_matrix.rows(); }
+
+ SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
+ {
+ switch(mode)
+ {
+ case SimplicialCholeskyLLt:
+ m_LDLt = false;
+ break;
+ case SimplicialCholeskyLDLt:
+ m_LDLt = true;
+ break;
+ default:
+ break;
+ }
+
+ return *this;
+ }
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful,
+ * \c NumericalIssue if the matrix.appears to be negative.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "Decomposition is not initialized.");
+ return m_info;
+ }
+
+ /** Computes the sparse Cholesky decomposition of \a matrix */
+ SimplicialCholesky& compute(const MatrixType& matrix)
+ {
+ analyzePattern(matrix);
+ factorize(matrix);
+ return *this;
+ }
+
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs>
+ inline const internal::solve_retval<SimplicialCholesky, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "SimplicialCholesky is not initialized.");
+ eigen_assert(rows()==b.rows()
+ && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval<SimplicialCholesky, Rhs>(*this, b.derived());
+ }
+
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ *
+ * \sa compute()
+ */
+// template<typename Rhs>
+// inline const internal::sparse_solve_retval<CholmodDecomposition, Rhs>
+// solve(const SparseMatrixBase<Rhs>& b) const
+// {
+// eigen_assert(m_isInitialized && "SimplicialCholesky is not initialized.");
+// eigen_assert(rows()==b.rows()
+// && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b");
+// return internal::sparse_solve_retval<SimplicialCholesky, Rhs>(*this, b.derived());
+// }
+
+ /** Performs a symbolic decomposition on the sparcity of \a matrix.
+ *
+ * This function is particularly useful when solving for several problems having the same structure.
+ *
+ * \sa factorize()
+ */
+ void analyzePattern(const MatrixType& a)
+ {
+ eigen_assert(a.rows()==a.cols());
+ const Index size = a.rows();
+ m_matrix.resize(size, size);
+ m_parent.resize(size);
+ m_nonZerosPerCol.resize(size);
+
+ Index* tags = ei_aligned_stack_new(Index, size);
+
+ // TODO allows to configure the permutation
+ const Index* P = internal::minimum_degree_ordering(1, a);
+ const Index* Pinv = 0;
+ if(P)
+ {
+ m_P.indices() = VectorXi::Map(P,size);
+ m_Pinv = m_P.inverse();
+ Pinv = m_Pinv.indices().data();
+ }
+ else
+ {
+ m_P.resize(0);
+ m_Pinv.resize(0);
+ }
+
+ for(Index k = 0; k < size; ++k)
+ {
+ /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
+ m_parent[k] = -1; /* parent of k is not yet known */
+ tags[k] = k; /* mark node k as visited */
+ m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
+ Index kk = P ? P[k] : k; /* kth original, or permuted, column */
+ for(typename MatrixType::InnerIterator it(a,kk); it; ++it)
+ {
+ /* A (i,k) is nonzero (original or permuted A) */
+ Index i = Pinv ? Pinv[it.index()] : it.index();
+ if(i < k)
+ {
+ /* follow path from i to root of etree, stop at flagged node */
+ for(; tags[i] != k; i = m_parent[i])
+ {
+ /* find parent of i if not yet determined */
+ if (m_parent[i] == -1)
+ m_parent[i] = k;
+ ++m_nonZerosPerCol[i]; /* L (k,i) is nonzero */
+ tags[i] = k; /* mark i as visited */
+ }
+ }
+ }
+ }
+
+ // release worspace
+ ei_aligned_stack_delete(Index, tags, size);
+
+ /* construct Lp index array from m_nonZerosPerCol column counts */
+ Index* Lp = m_matrix._outerIndexPtr();
+ Lp[0] = 0;
+ for(Index k = 0; k < size; ++k)
+ Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (m_LDLt ? 0 : 1);
+
+ m_matrix.resizeNonZeros(Lp[size]);
+
+ m_isInitialized = true;
+ m_info = Success;
+ m_analysisIsOk = true;
+ m_factorizationIsOk = false;
+ }
+
+ /** Performs a numeric decomposition of \a matrix
+ *
+ * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
+ *
+ * \sa analyzePattern()
+ */
+ void factorize(const MatrixType& a)
+ {
+ eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
+ eigen_assert(a.rows()==a.cols());
+ const Index size = a.rows();
+ eigen_assert(m_parent.size()==size);
+ eigen_assert(m_nonZerosPerCol.size()==size);
+
+ const Index* Lp = m_matrix._outerIndexPtr();
+ Index* Li = m_matrix._innerIndexPtr();
+ Scalar* Lx = m_matrix._valuePtr();
+
+ Scalar* y = ei_aligned_stack_new(Scalar, size);
+ Index* pattern = ei_aligned_stack_new(Index, size);
+ Index* tags = ei_aligned_stack_new(Index, size);
+
+ Index* P = 0;
+ Index* Pinv = 0;
+
+ if(m_P.size()==size)
+ {
+ P = m_P.indices().data();
+ Pinv = m_Pinv.indices().data();
+ }
+
+ bool ok = true;
+
+ m_diag.resize(m_LDLt ? size : 0);
+
+ for(Index k = 0; k < size; ++k)
+ {
+ /* compute nonzero pattern of kth row of L, in topological order */
+ y[k] = 0.0; /* Y(0:k) is now all zero */
+ Index top = size; /* stack for pattern is empty */
+ tags[k] = k; /* mark node k as visited */
+ m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
+ Index kk = (P) ? (P[k]) : (k); /* kth original, or permuted, column */
+ for(typename MatrixType::InnerIterator it(a,kk); it; ++it)
+ {
+ Index i = Pinv ? Pinv[it.index()] : it.index();
+ if(i <= k)
+ {
+ y[i] += internal::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */
+ Index len;
+ for(len = 0; tags[i] != k; i = m_parent[i])
+ {
+ pattern[len++] = i; /* L(k,i) is nonzero */
+ tags[i] = k; /* mark i as visited */
+ }
+ while(len > 0)
+ pattern[--top] = pattern[--len];
+ }
+ }
+
+ /* compute numerical values kth row of L (a sparse triangular solve) */
+ Scalar d = y[k]; // get D(k,k) and clear Y(k)
+ y[k] = 0.0;
+ for(; top < size; ++top)
+ {
+ if(1)
+ {
+ Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
+ Scalar yi = y[i]; /* get and clear Y(i) */
+ y[i] = 0.0;
+
+ /* the nonzero entry L(k,i) */
+ Scalar l_ki;
+ if(m_LDLt)
+ l_ki = yi / m_diag[i];
+ else
+ yi = l_ki = yi / Lx[Lp[i]];
+
+ Index p2 = Lp[i] + m_nonZerosPerCol[i];
+ Index p;
+ for(p = Lp[i] + (m_LDLt ? 0 : 1); p < p2; ++p)
+ y[Li[p]] -= internal::conj(Lx[p]) * yi;
+ d -= l_ki * internal::conj(yi);
+ Li[p] = k; /* store L(k,i) in column form of L */
+ Lx[p] = l_ki;
+ ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
+ }
+ }
+ if(m_LDLt)
+ m_diag[k] = d;
+ else
+ {
+ Index p = Lp[k]+m_nonZerosPerCol[k]++;
+ Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */
+ Lx[p] = internal::sqrt(d) ;
+ }
+ if(d == Scalar(0))
+ {
+ ok = false; /* failure, D(k,k) is zero */
+ break;
+ }
+ }
+
+ // release workspace
+ ei_aligned_stack_delete(Scalar, y, size);
+ ei_aligned_stack_delete(Index, pattern, size);
+ ei_aligned_stack_delete(Index, tags, size);
+
+ m_info = ok ? Success : NumericalIssue;
+ m_factorizationIsOk = true;
+ }
+
+ #ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+ {
+ eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
+ eigen_assert(m_matrix.rows()==b.rows());
+
+ if(m_info!=Success)
+ return;
+
+ if(m_P.size()>0)
+ dest = m_Pinv * b;
+ else
+ dest = b;
+
+ if(m_LDLt)
+ {
+ if(m_matrix.nonZeros()>0) // otherwise L==I
+ m_matrix.template triangularView<UnitLower>().solveInPlace(dest);
+
+ dest = m_diag.asDiagonal().inverse() * dest;
+
+ if (m_matrix.nonZeros()>0) // otherwise L==I
+ m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(dest);
+ }
+ else
+ {
+ if(m_matrix.nonZeros()>0) // otherwise L==I
+ m_matrix.template triangularView<Lower>().solveInPlace(dest);
+
+ if (m_matrix.nonZeros()>0) // otherwise L==I
+ m_matrix.adjoint().template triangularView<Upper>().solveInPlace(dest);
+ }
+
+ if(m_P.size()>0)
+ dest = m_P * dest;
+ }
+
+ /** \internal */
+ /*
+ template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
+ void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
+ {
+ // TODO
+ }
+ */
+ #endif // EIGEN_PARSED_BY_DOXYGEN
+
+ protected:
+ mutable ComputationInfo m_info;
+ bool m_isInitialized;
+ bool m_factorizationIsOk;
+ bool m_analysisIsOk;
+ bool m_LDLt;
+
+ CholMatrixType m_matrix;
+ VectorType m_diag; // the diagonal coefficients in case of a LDLt decomposition
+ VectorXi m_parent; // elimination tree
+ VectorXi m_nonZerosPerCol;
+ PermutationMatrix<Dynamic> m_P; // the permutation
+ PermutationMatrix<Dynamic> m_Pinv; // the inverse permutation
+};
+
+namespace internal {
+
+template<typename _MatrixType, int _UpLo, typename Rhs>
+struct solve_retval<SimplicialCholesky<_MatrixType,_UpLo>, Rhs>
+ : solve_retval_base<SimplicialCholesky<_MatrixType,_UpLo>, Rhs>
+{
+ typedef SimplicialCholesky<_MatrixType,_UpLo> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+template<typename _MatrixType, int _UpLo, typename Rhs>
+struct sparse_solve_retval<SimplicialCholesky<_MatrixType,_UpLo>, Rhs>
+ : sparse_solve_retval_base<SimplicialCholesky<_MatrixType,_UpLo>, Rhs>
+{
+ typedef SimplicialCholesky<_MatrixType,_UpLo> Dec;
+ EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+}
+
+#endif // EIGEN_SIMPLICIAL_CHOLESKY_H
diff --git a/unsupported/Eigen/src/SparseExtra/Solve.h b/unsupported/Eigen/src/SparseExtra/Solve.h
new file mode 100644
index 000000000..19449e9de
--- /dev/null
+++ b/unsupported/Eigen/src/SparseExtra/Solve.h
@@ -0,0 +1,82 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_SPARSE_SOLVE_H
+#define EIGEN_SPARSE_SOLVE_H
+
+namespace internal {
+
+template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base;
+template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval;
+
+template<typename DecompositionType, typename Rhs>
+struct traits<sparse_solve_retval_base<DecompositionType, Rhs> >
+{
+ typedef typename DecompositionType::MatrixType MatrixType;
+ typedef SparseMatrix<typename Rhs::Scalar, Rhs::Options, typename Rhs::Index> ReturnType;
+};
+
+template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base
+ : public ReturnByValue<sparse_solve_retval_base<_DecompositionType, Rhs> >
+{
+ typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
+ typedef _DecompositionType DecompositionType;
+ typedef ReturnByValue<sparse_solve_retval_base> Base;
+ typedef typename Base::Index Index;
+
+ sparse_solve_retval_base(const DecompositionType& dec, const Rhs& rhs)
+ : m_dec(dec), m_rhs(rhs)
+ {}
+
+ inline Index rows() const { return m_dec.cols(); }
+ inline Index cols() const { return m_rhs.cols(); }
+ inline const DecompositionType& dec() const { return m_dec; }
+ inline const RhsNestedCleaned& rhs() const { return m_rhs; }
+
+ template<typename Dest> inline void evalTo(Dest& dst) const
+ {
+ static_cast<const sparse_solve_retval<DecompositionType,Rhs>*>(this)->evalTo(dst);
+ }
+
+ protected:
+ const DecompositionType& m_dec;
+ const typename Rhs::Nested m_rhs;
+};
+
+#define EIGEN_MAKE_SPARSE_SOLVE_HELPERS(DecompositionType,Rhs) \
+ typedef typename DecompositionType::MatrixType MatrixType; \
+ typedef typename MatrixType::Scalar Scalar; \
+ typedef typename MatrixType::RealScalar RealScalar; \
+ typedef typename MatrixType::Index Index; \
+ typedef Eigen::internal::sparse_solve_retval_base<DecompositionType,Rhs> Base; \
+ using Base::dec; \
+ using Base::rhs; \
+ using Base::rows; \
+ using Base::cols; \
+ sparse_solve_retval(const DecompositionType& dec, const Rhs& rhs) \
+ : Base(dec, rhs) {}
+
+} // namepsace internal
+
+#endif // EIGEN_SPARSE_SOLVE_H
diff --git a/unsupported/Eigen/src/SparseExtra/SparseLDLT.h b/unsupported/Eigen/src/SparseExtra/SparseLDLTLegacy.h
index 837d70295..14a89dcf9 100644
--- a/unsupported/Eigen/src/SparseExtra/SparseLDLT.h
+++ b/unsupported/Eigen/src/SparseExtra/SparseLDLTLegacy.h
@@ -60,8 +60,8 @@ LDL License:
and a notice that the code was modified is included.
*/
-#ifndef EIGEN_SPARSELDLT_H
-#define EIGEN_SPARSELDLT_H
+#ifndef EIGEN_SPARSELDLT_LEGACY_H
+#define EIGEN_SPARSELDLT_LEGACY_H
/** \ingroup Sparse_Module
*
@@ -187,6 +187,8 @@ class SparseLDLT
VectorXi m_parent; // elimination tree
VectorXi m_nonZerosPerCol;
// VectorXi m_w; // workspace
+ PermutationMatrix<Dynamic> m_P;
+ PermutationMatrix<Dynamic> m_Pinv;
RealScalar m_precision;
int m_flags;
mutable int m_status;
@@ -248,15 +250,22 @@ void SparseLDLT<_MatrixType,Backend>::_symbolic(const _MatrixType& a)
const Index* Ap = a._outerIndexPtr();
const Index* Ai = a._innerIndexPtr();
Index* Lp = m_matrix._outerIndexPtr();
+
const Index* P = 0;
Index* Pinv = 0;
- if (P)
+ if(P)
{
- /* If P is present then compute Pinv, the inverse of P */
- for (Index k = 0; k < size; ++k)
- Pinv[P[k]] = k;
+ m_P.indices() = VectorXi::Map(P,size);
+ m_Pinv = m_P.inverse();
+ Pinv = m_Pinv.indices().data();
}
+ else
+ {
+ m_P.resize(0);
+ m_Pinv.resize(0);
+ }
+
for (Index k = 0; k < size; ++k)
{
/* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
@@ -311,9 +320,16 @@ bool SparseLDLT<_MatrixType,Backend>::_numeric(const _MatrixType& a)
Scalar * y = ei_aligned_stack_new(Scalar, size);
Index * pattern = ei_aligned_stack_new(Index, size);
Index * tags = ei_aligned_stack_new(Index, size);
-
- const Index* P = 0;
- const Index* Pinv = 0;
+
+ Index* P = 0;
+ Index* Pinv = 0;
+
+ if(m_P.size()==size)
+ {
+ P = m_P.indices().data();
+ Pinv = m_Pinv.indices().data();
+ }
+
bool ok = true;
for (Index k = 0; k < size; ++k)
@@ -383,6 +399,9 @@ bool SparseLDLT<_MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) cons
eigen_assert(m_matrix.rows()==b.rows());
if (!m_succeeded)
return false;
+
+ if(m_P.size()>0)
+ b = m_Pinv * b;
if (m_matrix.nonZeros()>0) // otherwise L==I
m_matrix.template triangularView<UnitLower>().solveInPlace(b);
@@ -390,7 +409,10 @@ bool SparseLDLT<_MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) cons
if (m_matrix.nonZeros()>0) // otherwise L==I
m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(b);
+ if(m_P.size()>0)
+ b = m_P * b;
+
return true;
}
-#endif // EIGEN_SPARSELDLT_H
+#endif // EIGEN_SPARSELDLT_LEGACY_H
diff --git a/unsupported/test/sparse_ldlt.cpp b/unsupported/test/sparse_ldlt.cpp
index 275839670..035e21123 100644
--- a/unsupported/test/sparse_ldlt.cpp
+++ b/unsupported/test/sparse_ldlt.cpp
@@ -31,6 +31,8 @@
template<typename Scalar> void sparse_ldlt(int rows, int cols)
{
+ static bool odd = true;
+ odd = !odd;
double density = std::max(8./(rows*cols), 0.01);
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
@@ -42,41 +44,126 @@ template<typename Scalar> void sparse_ldlt(int rows, int cols)
DenseVector refX(cols), x(cols);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
- for(int i=0; i<rows; ++i)
- m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
-
- refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b);
+
+ SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
+ DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
+
+ refX = refMat3.template selfadjointView<Upper>().ldlt().solve(b);
typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
x = b;
- SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
+ SparseLDLT<SparseSelfAdjointMatrix> ldlt(m3);
if (ldlt.succeeded())
ldlt.solveInPlace(x);
else
std::cerr << "warning LDLT failed\n";
- VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
+// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
+
+
+
+ // new Simplicial LLT
+
+
+ // new API
+ {
+ SparseMatrix<Scalar> m2(rows, cols);
+ DenseMatrix refMat2(rows, cols);
-#ifdef EIGEN_CHOLMOD_SUPPORT
- x = b;
- SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m2);
- if (ldlt2.succeeded())
- ldlt2.solveInPlace(x);
- else
- std::cerr << "warning LDLT failed\n";
+ DenseVector b = DenseVector::Random(cols);
+ DenseVector ref_x(cols), x(cols);
+ DenseMatrix B = DenseMatrix::Random(rows,cols);
+ DenseMatrix ref_X(rows,cols), X(rows,cols);
- VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
- VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace");
+ initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
+ for(int i=0; i<rows; ++i)
+ m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
+
+
+ SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows);
+ DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
+
+ m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0);
+ m3_up.template selfadjointView<Upper>().rankUpdate(m2,0);
+
+ // with a single vector as the rhs
+ ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
- SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt3(m2);
- if (ldlt3.succeeded())
- x = ldlt3.solve(b);
- else
- std::cerr << "warning LDLT failed\n";
+ x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b);
+ VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, single dense rhs");
+
+ x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b);
+ VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, single dense rhs");
+
+// x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3_lo).solve(b);
+// VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, lower only, single dense rhs");
+
+// x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3_up).solve(b);
+// VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, upper only, single dense rhs");
+
+
+ // with multiple rhs
+ ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B);
+
+ X = SimplicialCholesky<SparseMatrix<Scalar>, Lower>()/*.setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt)*/.compute(m3).solve(B);
+ VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, multiple dense rhs");
+
+// X = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B);
+// VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, multiple dense rhs");
+
+
+// // with a sparse rhs
+// SparseMatrix<Scalar> spB(rows,cols), spX(rows,cols);
+// B.diagonal().array() += 1;
+// spB = B.sparseView(0.5,1);
+//
+// ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB));
- VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
- VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve");
+// spX = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3).solve(spB);
+// VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
+//
+// spX = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3).solve(spB);
+// VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
+ }
+
+
+
+// for(int i=0; i<rows; ++i)
+// m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
+//
+// refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b);
+// typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix;
+// x = b;
+// SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
+// if (ldlt.succeeded())
+// ldlt.solveInPlace(x);
+// else
+// std::cerr << "warning LDLT failed\n";
+//
+// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
+// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
+
+#ifdef EIGEN_CHOLMOD_SUPPORT
+// x = b;
+// SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m2);
+// if (ldlt2.succeeded())
+// ldlt2.solveInPlace(x);
+// else
+// std::cerr << "warning LDLT failed\n";
+//
+// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
+// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace");
+//
+//
+// SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt3(m2);
+// if (ldlt3.succeeded())
+// x = ldlt3.solve(b);
+// else
+// std::cerr << "warning LDLT failed\n";
+//
+// VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
+// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve");
#endif
}