aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-10-28 19:06:45 -0400
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-10-28 19:06:45 -0400
commite8dd552257f0e886ee281aa84b7094fc489608d0 (patch)
tree596633c4d3e721b6d4fad31520423b9c0e03bf8a /unsupported/Eigen/src
parent2840ac7e948ecb3c7b19ba8f581f829a4a4e1fea (diff)
parent6219f9acfa61e54baf266f816b7eaf9ffbd9841e (diff)
sync with mainline
Diffstat (limited to 'unsupported/Eigen/src')
-rw-r--r--unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h4
-rw-r--r--unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h97
-rw-r--r--unsupported/Eigen/src/FFT/ei_fftw_impl.h224
-rw-r--r--unsupported/Eigen/src/FFT/ei_kissfft_impl.h414
4 files changed, 702 insertions, 37 deletions
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h b/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
index a5e881487..b3983f8a6 100644
--- a/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
@@ -50,10 +50,12 @@ public:
typedef typename Functor::InputType InputType;
typedef typename Functor::ValueType ValueType;
typedef typename Functor::JacobianType JacobianType;
+ typedef typename JacobianType::Scalar Scalar;
- typedef Matrix<double,InputsAtCompileTime,1> DerivativeType;
+ typedef Matrix<Scalar,InputsAtCompileTime,1> DerivativeType;
typedef AutoDiffScalar<DerivativeType> ActiveScalar;
+
typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
index 888aa5c8c..2fb733a99 100644
--- a/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
@@ -42,9 +42,17 @@ void ei_make_coherent(const A& a, const B&b)
/** \class AutoDiffScalar
* \brief A scalar type replacement with automatic differentation capability
*
- * \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f)
+ * \param _DerType the vector type used to store/represent the derivatives. The base scalar type
+ * as well as the number of derivatives to compute are determined from this type.
+ * Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
+ * if the number of derivatives is not known at compile time, and/or, the number
+ * of derivatives is large.
+ * Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a
+ * existing vector into an AutoDiffScalar.
+ * Finally, _DerType can also be any Eigen compatible expression.
*
- * This class represents a scalar value while tracking its respective derivatives.
+ * This class represents a scalar value while tracking its respective derivatives using Eigen's expression
+ * template mechanism.
*
* It supports the following list of global math function:
* - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
@@ -56,10 +64,11 @@ void ei_make_coherent(const A& a, const B&b)
* while derivatives are computed right away.
*
*/
-template<typename DerType>
+template<typename _DerType>
class AutoDiffScalar
{
public:
+ typedef typename ei_cleantype<_DerType>::type DerType;
typedef typename ei_traits<DerType>::Scalar Scalar;
inline AutoDiffScalar() {}
@@ -108,12 +117,28 @@ class AutoDiffScalar
inline const DerType& derivatives() const { return m_derivatives; }
inline DerType& derivatives() { return m_derivatives; }
+ inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
+ {
+ return AutoDiffScalar<DerType>(m_value + other, m_derivatives);
+ }
+
+ friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
+ {
+ return AutoDiffScalar<DerType>(a + b.value(), b.derivatives());
+ }
+
+ inline AutoDiffScalar& operator+=(const Scalar& other)
+ {
+ value() += other;
+ return *this;
+ }
+
template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerType,OtherDerType> >
+ inline const AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerType,typename ei_cleantype<OtherDerType>::type>::Type >
operator+(const AutoDiffScalar<OtherDerType>& other) const
{
ei_make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerType,OtherDerType> >(
+ return AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,DerType,typename ei_cleantype<OtherDerType>::type>::Type >(
m_value + other.value(),
m_derivatives + other.derivatives());
}
@@ -127,11 +152,11 @@ class AutoDiffScalar
}
template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<ei_scalar_difference_op<Scalar>, DerType,OtherDerType> >
+ inline const AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>, DerType,typename ei_cleantype<OtherDerType>::type>::Type >
operator-(const AutoDiffScalar<OtherDerType>& other) const
{
ei_make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseBinaryOp<ei_scalar_difference_op<Scalar>, DerType,OtherDerType> >(
+ return AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>, DerType,typename ei_cleantype<OtherDerType>::type>::Type >(
m_value - other.value(),
m_derivatives - other.derivatives());
}
@@ -145,73 +170,73 @@ class AutoDiffScalar
}
template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, DerType> >
+ inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, DerType>::Type >
operator-() const
{
- return AutoDiffScalar<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, DerType> >(
+ return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, DerType>::Type >(
-m_value,
-m_derivatives);
}
- inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >
+ inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >
operator*(const Scalar& other) const
{
- return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
+ return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
m_value * other,
(m_derivatives * other));
}
- friend inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >
+ friend inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >
operator*(const Scalar& other, const AutoDiffScalar& a)
{
- return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
+ return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
a.value() * other,
a.derivatives() * other);
}
- inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >
+ inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >
operator/(const Scalar& other) const
{
- return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
+ return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
m_value / other,
(m_derivatives * (Scalar(1)/other)));
}
- friend inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >
+ friend inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >
operator/(const Scalar& other, const AutoDiffScalar& a)
{
- return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
+ return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
other / a.value(),
a.derivatives() * (-Scalar(1)/other));
}
template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
- NestByValue<CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
- NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >,
- NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherDerType> > > > > >
+ inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
+ typename MakeNestByValue<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,
+ typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
+ typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >::Type >::Type >
operator/(const AutoDiffScalar<OtherDerType>& other) const
{
ei_make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
- NestByValue<CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
- NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >,
- NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherDerType> > > > > >(
+ return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>,
+ typename MakeNestByValue<typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,
+ typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
+ typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >::Type >::Type >(
m_value / other.value(),
((m_derivatives * other.value()).nestByValue() - (m_value * other.derivatives()).nestByValue()).nestByValue()
* (Scalar(1)/(other.value()*other.value())));
}
template<typename OtherDerType>
- inline const AutoDiffScalar<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,
- NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >,
- NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherDerType> > > >
+ inline const AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,
+ typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
+ typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >
operator*(const AutoDiffScalar<OtherDerType>& other) const
{
ei_make_coherent(m_derivatives, other.derivatives());
- return AutoDiffScalar<CwiseBinaryOp<ei_scalar_sum_op<Scalar>,
- NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >,
- NestByValue<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, OtherDerType> > > >(
+ return AutoDiffScalar<typename MakeCwiseBinaryOp<ei_scalar_sum_op<Scalar>,
+ typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type>::Type,
+ typename MakeNestByValue<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, typename ei_cleantype<OtherDerType>::type>::Type>::Type >::Type >(
m_value * other.value(),
(m_derivatives * other.value()).nestByValue() + (m_value * other.derivatives()).nestByValue());
}
@@ -283,11 +308,11 @@ struct ei_make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRo
#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
template<typename DerType> \
- inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<typename Eigen::ei_traits<DerType>::Scalar>, DerType> > \
+ inline const Eigen::AutoDiffScalar<typename Eigen::MakeCwiseUnaryOp<Eigen::ei_scalar_multiple_op<typename Eigen::ei_traits<DerType>::Scalar>, DerType>::Type > \
FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
using namespace Eigen; \
typedef typename ei_traits<DerType>::Scalar Scalar; \
- typedef AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> > ReturnType; \
+ typedef AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type > ReturnType; \
CODE; \
}
@@ -314,12 +339,12 @@ namespace std
return ReturnType(std::log(x.value),x.derivatives() * (Scalar(1).x.value()));)
template<typename DerType>
- inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::ei_scalar_multiple_op<typename Eigen::ei_traits<DerType>::Scalar>, DerType> >
+ inline const Eigen::AutoDiffScalar<typename Eigen::MakeCwiseUnaryOp<Eigen::ei_scalar_multiple_op<typename Eigen::ei_traits<DerType>::Scalar>, DerType>::Type >
pow(const Eigen::AutoDiffScalar<DerType>& x, typename Eigen::ei_traits<DerType>::Scalar y)
{
using namespace Eigen;
typedef typename ei_traits<DerType>::Scalar Scalar;
- return AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType> >(
+ return AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, DerType>::Type >(
std::pow(x.value(),y),
x.derivatives() * (y * std::pow(x.value(),y-1)));
}
@@ -359,7 +384,7 @@ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(ei_log,
return ReturnType(ei_log(x.value),x.derivatives() * (Scalar(1).x.value()));)
template<typename DerType>
-inline const AutoDiffScalar<CwiseUnaryOp<ei_scalar_multiple_op<typename ei_traits<DerType>::Scalar>, DerType> >
+inline const AutoDiffScalar<typename MakeCwiseUnaryOp<ei_scalar_multiple_op<typename ei_traits<DerType>::Scalar>, DerType>::Type >
ei_pow(const AutoDiffScalar<DerType>& x, typename ei_traits<DerType>::Scalar y)
{ return std::pow(x,y);}
diff --git a/unsupported/Eigen/src/FFT/ei_fftw_impl.h b/unsupported/Eigen/src/FFT/ei_fftw_impl.h
new file mode 100644
index 000000000..e1f67f334
--- /dev/null
+++ b/unsupported/Eigen/src/FFT/ei_fftw_impl.h
@@ -0,0 +1,224 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+
+
+ // FFTW uses non-const arguments
+ // so we must use ugly const_cast calls for all the args it uses
+ //
+ // This should be safe as long as
+ // 1. we use FFTW_ESTIMATE for all our planning
+ // see the FFTW docs section 4.3.2 "Planner Flags"
+ // 2. fftw_complex is compatible with std::complex
+ // This assumes std::complex<T> layout is array of size 2 with real,imag
+ template <typename T>
+ inline
+ T * ei_fftw_cast(const T* p)
+ {
+ return const_cast<T*>( p);
+ }
+
+ inline
+ fftw_complex * ei_fftw_cast( const std::complex<double> * p)
+ {
+ return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
+ }
+
+ inline
+ fftwf_complex * ei_fftw_cast( const std::complex<float> * p)
+ {
+ return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
+ }
+
+ inline
+ fftwl_complex * ei_fftw_cast( const std::complex<long double> * p)
+ {
+ return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
+ }
+
+ template <typename T>
+ struct ei_fftw_plan {};
+
+ template <>
+ struct ei_fftw_plan<float>
+ {
+ typedef float scalar_type;
+ typedef fftwf_complex complex_type;
+ fftwf_plan m_plan;
+ ei_fftw_plan() :m_plan(NULL) {}
+ ~ei_fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftwf_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftwf_execute_dft_c2r( m_plan, src,dst);
+ }
+ };
+ template <>
+ struct ei_fftw_plan<double>
+ {
+ typedef double scalar_type;
+ typedef fftw_complex complex_type;
+ fftw_plan m_plan;
+ ei_fftw_plan() :m_plan(NULL) {}
+ ~ei_fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftw_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftw_execute_dft_c2r( m_plan, src,dst);
+ }
+ };
+ template <>
+ struct ei_fftw_plan<long double>
+ {
+ typedef long double scalar_type;
+ typedef fftwl_complex complex_type;
+ fftwl_plan m_plan;
+ ei_fftw_plan() :m_plan(NULL) {}
+ ~ei_fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
+
+ inline
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ inline
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftwl_execute_dft_r2c( m_plan,src,dst);
+ }
+ inline
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftwl_execute_dft_c2r( m_plan, src,dst);
+ }
+ };
+
+ template <typename _Scalar>
+ struct ei_fftw_impl
+ {
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+
+ inline
+ void clear()
+ {
+ m_plans.clear();
+ }
+
+ inline
+ void fwd( Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
+ }
+
+ // real-to-complex forward FFT
+ inline
+ void fwd( Complex * dst,const Scalar * src,int nfft)
+ {
+ get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
+ int nhbins=(nfft>>1)+1;
+ for (int k=nhbins;k < nfft; ++k )
+ dst[k] = conj(dst[nfft-k]);
+ }
+
+ // inverse complex-to-complex
+ inline
+ void inv(Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
+
+ //TODO move scaling to Eigen::FFT
+ // scaling
+ Scalar s = Scalar(1.)/nfft;
+ for (int k=0;k<nfft;++k)
+ dst[k] *= s;
+ }
+
+ // half-complex to scalar
+ inline
+ void inv( Scalar * dst,const Complex * src,int nfft)
+ {
+ get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
+
+ //TODO move scaling to Eigen::FFT
+ Scalar s = Scalar(1.)/nfft;
+ for (int k=0;k<nfft;++k)
+ dst[k] *= s;
+ }
+
+ protected:
+ typedef ei_fftw_plan<Scalar> PlanData;
+ typedef std::map<int,PlanData> PlanMap;
+
+ PlanMap m_plans;
+
+ inline
+ PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
+ {
+ bool inplace = (dst==src);
+ bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
+ int key = (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned;
+ return m_plans[key];
+ }
+ };
diff --git a/unsupported/Eigen/src/FFT/ei_kissfft_impl.h b/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
new file mode 100644
index 000000000..c068d8765
--- /dev/null
+++ b/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
@@ -0,0 +1,414 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+
+
+ // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
+ // Copyright 2003-2009 Mark Borgerding
+
+ template <typename _Scalar>
+ struct ei_kiss_cpx_fft
+ {
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+ std::vector<Complex> m_twiddles;
+ std::vector<int> m_stageRadix;
+ std::vector<int> m_stageRemainder;
+ std::vector<Complex> m_scratchBuf;
+ bool m_inverse;
+
+ void make_twiddles(int nfft,bool inverse)
+ {
+ m_inverse = inverse;
+ m_twiddles.resize(nfft);
+ Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
+ for (int i=0;i<nfft;++i)
+ m_twiddles[i] = exp( Complex(0,i*phinc) );
+ }
+
+ void factorize(int nfft)
+ {
+ //start factoring out 4's, then 2's, then 3,5,7,9,...
+ int n= nfft;
+ int p=4;
+ do {
+ while (n % p) {
+ switch (p) {
+ case 4: p = 2; break;
+ case 2: p = 3; break;
+ default: p += 2; break;
+ }
+ if (p*p>n)
+ p=n;// impossible to have a factor > sqrt(n)
+ }
+ n /= p;
+ m_stageRadix.push_back(p);
+ m_stageRemainder.push_back(n);
+ if ( p > 5 )
+ m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
+ }while(n>1);
+ }
+
+ template <typename _Src>
+ void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
+ {
+ int p = m_stageRadix[stage];
+ int m = m_stageRemainder[stage];
+ Complex * Fout_beg = xout;
+ Complex * Fout_end = xout + p*m;
+
+ if (m>1) {
+ do{
+ // recursive call:
+ // DFT of size m*p performed by doing
+ // p instances of smaller DFTs of size m,
+ // each one takes a decimated version of the input
+ work(stage+1, xout , xin, fstride*p,in_stride);
+ xin += fstride*in_stride;
+ }while( (xout += m) != Fout_end );
+ }else{
+ do{
+ *xout = *xin;
+ xin += fstride*in_stride;
+ }while(++xout != Fout_end );
+ }
+ xout=Fout_beg;
+
+ // recombine the p smaller DFTs
+ switch (p) {
+ case 2: bfly2(xout,fstride,m); break;
+ case 3: bfly3(xout,fstride,m); break;
+ case 4: bfly4(xout,fstride,m); break;
+ case 5: bfly5(xout,fstride,m); break;
+ default: bfly_generic(xout,fstride,m,p); break;
+ }
+ }
+
+ inline
+ void bfly2( Complex * Fout, const size_t fstride, int m)
+ {
+ for (int k=0;k<m;++k) {
+ Complex t = Fout[m+k] * m_twiddles[k*fstride];
+ Fout[m+k] = Fout[k] - t;
+ Fout[k] += t;
+ }
+ }
+
+ inline
+ void bfly4( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ Complex scratch[6];
+ int negative_if_inverse = m_inverse * -2 +1;
+ for (size_t k=0;k<m;++k) {
+ scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
+ scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
+ scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
+ scratch[5] = Fout[k] - scratch[1];
+
+ Fout[k] += scratch[1];
+ scratch[3] = scratch[0] + scratch[2];
+ scratch[4] = scratch[0] - scratch[2];
+ scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
+
+ Fout[k+2*m] = Fout[k] - scratch[3];
+ Fout[k] += scratch[3];
+ Fout[k+m] = scratch[5] + scratch[4];
+ Fout[k+3*m] = scratch[5] - scratch[4];
+ }
+ }
+
+ inline
+ void bfly3( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ size_t k=m;
+ const size_t m2 = 2*m;
+ Complex *tw1,*tw2;
+ Complex scratch[5];
+ Complex epi3;
+ epi3 = m_twiddles[fstride*m];
+
+ tw1=tw2=&m_twiddles[0];
+
+ do{
+ scratch[1]=Fout[m] * *tw1;
+ scratch[2]=Fout[m2] * *tw2;
+
+ scratch[3]=scratch[1]+scratch[2];
+ scratch[0]=scratch[1]-scratch[2];
+ tw1 += fstride;
+ tw2 += fstride*2;
+ Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
+ scratch[0] *= epi3.imag();
+ *Fout += scratch[3];
+ Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
+ Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
+ ++Fout;
+ }while(--k);
+ }
+
+ inline
+ void bfly5( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
+ size_t u;
+ Complex scratch[13];
+ Complex * twiddles = &m_twiddles[0];
+ Complex *tw;
+ Complex ya,yb;
+ ya = twiddles[fstride*m];
+ yb = twiddles[fstride*2*m];
+
+ Fout0=Fout;
+ Fout1=Fout0+m;
+ Fout2=Fout0+2*m;
+ Fout3=Fout0+3*m;
+ Fout4=Fout0+4*m;
+
+ tw=twiddles;
+ for ( u=0; u<m; ++u ) {
+ scratch[0] = *Fout0;
+
+ scratch[1] = *Fout1 * tw[u*fstride];
+ scratch[2] = *Fout2 * tw[2*u*fstride];
+ scratch[3] = *Fout3 * tw[3*u*fstride];
+ scratch[4] = *Fout4 * tw[4*u*fstride];
+
+ scratch[7] = scratch[1] + scratch[4];
+ scratch[10] = scratch[1] - scratch[4];
+ scratch[8] = scratch[2] + scratch[3];
+ scratch[9] = scratch[2] - scratch[3];
+
+ *Fout0 += scratch[7];
+ *Fout0 += scratch[8];
+
+ scratch[5] = scratch[0] + Complex(
+ (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
+ (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
+ );
+
+ scratch[6] = Complex(
+ (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
+ -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
+ );
+
+ *Fout1 = scratch[5] - scratch[6];
+ *Fout4 = scratch[5] + scratch[6];
+
+ scratch[11] = scratch[0] +
+ Complex(
+ (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
+ (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
+ );
+
+ scratch[12] = Complex(
+ -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
+ (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
+ );
+
+ *Fout2=scratch[11]+scratch[12];
+ *Fout3=scratch[11]-scratch[12];
+
+ ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
+ }
+ }
+
+ /* perform the butterfly for one stage of a mixed radix FFT */
+ inline
+ void bfly_generic(
+ Complex * Fout,
+ const size_t fstride,
+ int m,
+ int p
+ )
+ {
+ int u,k,q1,q;
+ Complex * twiddles = &m_twiddles[0];
+ Complex t;
+ int Norig = m_twiddles.size();
+ Complex * scratchbuf = &m_scratchBuf[0];
+
+ for ( u=0; u<m; ++u ) {
+ k=u;
+ for ( q1=0 ; q1<p ; ++q1 ) {
+ scratchbuf[q1] = Fout[ k ];
+ k += m;
+ }
+
+ k=u;
+ for ( q1=0 ; q1<p ; ++q1 ) {
+ int twidx=0;
+ Fout[ k ] = scratchbuf[0];
+ for (q=1;q<p;++q ) {
+ twidx += fstride * k;
+ if (twidx>=Norig) twidx-=Norig;
+ t=scratchbuf[q] * twiddles[twidx];
+ Fout[ k ] += t;
+ }
+ k += m;
+ }
+ }
+ }
+ };
+
+ template <typename _Scalar>
+ struct ei_kissfft_impl
+ {
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+
+ void clear()
+ {
+ m_plans.clear();
+ m_realTwiddles.clear();
+ }
+
+ template <typename _Src>
+ inline
+ void fwd( Complex * dst,const _Src *src,int nfft)
+ {
+ get_plan(nfft,false).work(0, dst, src, 1,1);
+ }
+
+ // real-to-complex forward FFT
+ // perform two FFTs of src even and src odd
+ // then twiddle to recombine them into the half-spectrum format
+ // then fill in the conjugate symmetric half
+ inline
+ void fwd( Complex * dst,const Scalar * src,int nfft)
+ {
+ if ( nfft&3 ) {
+ // use generic mode for odd
+ get_plan(nfft,false).work(0, dst, src, 1,1);
+ }else{
+ int ncfft = nfft>>1;
+ int ncfft2 = nfft>>2;
+ Complex * rtw = real_twiddles(ncfft2);
+
+ // use optimized mode for even real
+ fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
+ Complex dc = dst[0].real() + dst[0].imag();
+ Complex nyquist = dst[0].real() - dst[0].imag();
+ int k;
+ for ( k=1;k <= ncfft2 ; ++k ) {
+ Complex fpk = dst[k];
+ Complex fpnk = conj(dst[ncfft-k]);
+ Complex f1k = fpk + fpnk;
+ Complex f2k = fpk - fpnk;
+ Complex tw= f2k * rtw[k-1];
+ dst[k] = (f1k + tw) * Scalar(.5);
+ dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
+ }
+
+ // place conjugate-symmetric half at the end for completeness
+ // TODO: make this configurable ( opt-out )
+ for ( k=1;k < ncfft ; ++k )
+ dst[nfft-k] = conj(dst[k]);
+ dst[0] = dc;
+ dst[ncfft] = nyquist;
+ }
+ }
+
+ // inverse complex-to-complex
+ inline
+ void inv(Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,true).work(0, dst, src, 1,1);
+ scale(dst, nfft, Scalar(1)/nfft );
+ }
+
+ // half-complex to scalar
+ inline
+ void inv( Scalar * dst,const Complex * src,int nfft)
+ {
+ if (nfft&3) {
+ m_tmpBuf.resize(nfft);
+ inv(&m_tmpBuf[0],src,nfft);
+ for (int k=0;k<nfft;++k)
+ dst[k] = m_tmpBuf[k].real();
+ }else{
+ // optimized version for multiple of 4
+ int ncfft = nfft>>1;
+ int ncfft2 = nfft>>2;
+ Complex * rtw = real_twiddles(ncfft2);
+ m_tmpBuf.resize(ncfft);
+ m_tmpBuf[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
+ for (int k = 1; k <= ncfft / 2; ++k) {
+ Complex fk = src[k];
+ Complex fnkc = conj(src[ncfft-k]);
+ Complex fek = fk + fnkc;
+ Complex tmp = fk - fnkc;
+ Complex fok = tmp * conj(rtw[k-1]);
+ m_tmpBuf[k] = fek + fok;
+ m_tmpBuf[ncfft-k] = conj(fek - fok);
+ }
+ scale(&m_tmpBuf[0], ncfft, Scalar(1)/nfft );
+ get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf[0], 1,1);
+ }
+ }
+
+ protected:
+ typedef ei_kiss_cpx_fft<Scalar> PlanData;
+ typedef std::map<int,PlanData> PlanMap;
+
+ PlanMap m_plans;
+ std::map<int, std::vector<Complex> > m_realTwiddles;
+ std::vector<Complex> m_tmpBuf;
+
+ inline
+ int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
+
+ inline
+ PlanData & get_plan(int nfft,bool inverse)
+ {
+ // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
+ PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
+ if ( pd.m_twiddles.size() == 0 ) {
+ pd.make_twiddles(nfft,inverse);
+ pd.factorize(nfft);
+ }
+ return pd;
+ }
+
+ inline
+ Complex * real_twiddles(int ncfft2)
+ {
+ std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
+ if ( (int)twidref.size() != ncfft2 ) {
+ twidref.resize(ncfft2);
+ int ncfft= ncfft2<<1;
+ Scalar pi = acos( Scalar(-1) );
+ for (int k=1;k<=ncfft2;++k)
+ twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
+ }
+ return &twidref[0];
+ }
+
+ // TODO move scaling up into Eigen::FFT
+ inline
+ void scale(Complex *dst,int n,Scalar s)
+ {
+ for (int k=0;k<n;++k)
+ dst[k] *= s;
+ }
+ };