aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2008-10-04 14:23:00 +0000
committerGravatar Gael Guennebaud <g.gael@free.fr>2008-10-04 14:23:00 +0000
commit068ff3370d58cd4c95b8830aa851c29e9ffd1748 (patch)
tree6fbc389b647e5bf4197da31c447d2ce6fc3cdaff /Eigen/src
parent1fc503e3ce7dd57aef11200149c61ffefcc4797e (diff)
Sparse module:
* several fixes (transpose, matrix product, etc...) * Added a basic cholesky factorization * Added a low level hybrid dense/sparse vector class to help writing code involving intensive read/write in a fixed vector. It is currently used to implement the matrix product itself as well as in the Cholesky factorization.
Diffstat (limited to 'Eigen/src')
-rw-r--r--Eigen/src/Cholesky/Cholesky.h2
-rw-r--r--Eigen/src/Sparse/AmbiVector.h348
-rw-r--r--Eigen/src/Sparse/BasicSparseCholesky.h440
-rw-r--r--Eigen/src/Sparse/LinkedVectorMatrix.h35
-rw-r--r--Eigen/src/Sparse/SparseMatrix.h6
-rw-r--r--Eigen/src/Sparse/SparseMatrixBase.h5
-rw-r--r--Eigen/src/Sparse/SparseProduct.h124
7 files changed, 857 insertions, 103 deletions
diff --git a/Eigen/src/Cholesky/Cholesky.h b/Eigen/src/Cholesky/Cholesky.h
index 891a86a79..a64ab7c70 100644
--- a/Eigen/src/Cholesky/Cholesky.h
+++ b/Eigen/src/Cholesky/Cholesky.h
@@ -59,7 +59,7 @@ template<typename MatrixType> class Cholesky
};
public:
-
+
Cholesky(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols())
{
diff --git a/Eigen/src/Sparse/AmbiVector.h b/Eigen/src/Sparse/AmbiVector.h
new file mode 100644
index 000000000..0c4bd1af1
--- /dev/null
+++ b/Eigen/src/Sparse/AmbiVector.h
@@ -0,0 +1,348 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_AMBIVECTOR_H
+#define EIGEN_AMBIVECTOR_H
+
+/** \internal
+ * Hybrid sparse/dense vector class designed for intensive read-write operations.
+ *
+ * See BasicSparseCholesky and SparseProduct for usage examples.
+ */
+template<typename _Scalar> class AmbiVector
+{
+ public:
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ AmbiVector(int size)
+ : m_buffer(0), m_size(0), m_allocatedSize(0), m_mode(-1)
+ {
+ resize(size);
+ }
+
+ void init(RealScalar estimatedDensity);
+ void init(int mode);
+
+ void nonZeros() const;
+
+ /** Specifies a sub-vector to work on */
+ void setBounds(int start, int end) { m_start = start; m_end = end; }
+
+ void setZero();
+
+ void restart();
+ Scalar& coeffRef(int i);
+ Scalar coeff(int i);
+
+ class Iterator;
+
+ ~AmbiVector() { delete[] m_buffer; }
+
+ void resize(int size)
+ {
+ if (m_allocatedSize < size)
+ reallocate(size);
+ m_size = size;
+ }
+
+ int size() const { return m_size; }
+
+ protected:
+
+ void reallocate(int size)
+ {
+ Scalar* newBuffer = new Scalar[size/* *4 + (size * sizeof(int)*2)/sizeof(Scalar)+1 */];
+ int copySize = std::min(size, m_size);
+ memcpy(newBuffer, m_buffer, copySize * sizeof(Scalar));
+ delete[] m_buffer;
+ m_buffer = newBuffer;
+ m_allocatedSize = size;
+
+ m_size = size;
+ m_start = 0;
+ m_end = m_size;
+ }
+
+ protected:
+ // element type of the linked list
+ struct ListEl
+ {
+ int next;
+ int index;
+ Scalar value;
+ };
+
+ // used to store data in both mode
+ Scalar* m_buffer;
+ int m_size;
+ int m_start;
+ int m_end;
+ int m_allocatedSize;
+ int m_mode;
+
+ // linked list mode
+ int m_llStart;
+ int m_llCurrent;
+ int m_llSize;
+
+ private:
+ AmbiVector(const AmbiVector&);
+
+};
+
+/** \returns the number of non zeros in the current sub vector */
+template<typename Scalar>
+void AmbiVector<Scalar>::nonZeros() const
+{
+ if (m_mode==IsSparse)
+ return m_llSize;
+ else
+ return m_end - m_start;
+}
+
+template<typename Scalar>
+void AmbiVector<Scalar>::init(RealScalar estimatedDensity)
+{
+ if (m_mode = estimatedDensity>0.1)
+ init(IsDense);
+ else
+ init(IsSparse);
+}
+
+template<typename Scalar>
+void AmbiVector<Scalar>::init(int mode)
+{
+ m_mode = mode;
+ if (m_mode==IsSparse)
+ {
+ m_llSize = 0;
+ m_llStart = -1;
+ }
+}
+
+/** Must be called whenever we might perform a write access
+ * with an index smaller than the previous one.
+ *
+ * Don't worry, this function is extremely cheap.
+ */
+template<typename Scalar>
+void AmbiVector<Scalar>::restart()
+{
+ m_llCurrent = m_llStart;
+}
+
+/** Set all coefficients of current subvector to zero */
+template<typename Scalar>
+void AmbiVector<Scalar>::setZero()
+{
+ if (m_mode==IsDense)
+ {
+ for (int i=m_start; i<m_end; ++i)
+ m_buffer[i] = Scalar(0);
+ }
+ else
+ {
+ ei_assert(m_mode==IsSparse);
+ m_llSize = 0;
+ m_llStart = -1;
+ }
+}
+
+template<typename Scalar>
+Scalar& AmbiVector<Scalar>::coeffRef(int i)
+{
+ if (m_mode==IsDense)
+ return m_buffer[i];
+ else
+ {
+ ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
+ // TODO factorize the following code to reduce code generation
+ ei_assert(m_mode==IsSparse);
+ if (m_llSize==0)
+ {
+ // this is the first element
+ m_llStart = 0;
+ m_llCurrent = 0;
+ m_llSize++;
+ llElements[0].value = Scalar(0);
+ llElements[0].index = i;
+ llElements[0].next = -1;
+ return llElements[0].value;
+ }
+ else if (i<llElements[m_llStart].index)
+ {
+ // this is going to be the new first element of the list
+ ListEl& el = llElements[m_llSize];
+ el.value = Scalar(0);
+ el.index = i;
+ el.next = m_llStart;
+ m_llStart = m_llSize;
+ m_llSize++;
+ m_llCurrent = m_llStart;
+ return el.value;
+ }
+ else
+ {
+ int nextel = llElements[m_llCurrent].next;
+ ei_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
+ while (nextel >= 0 && llElements[nextel].index<=i)
+ {
+ m_llCurrent = nextel;
+ nextel = llElements[nextel].next;
+ }
+
+ if (llElements[m_llCurrent].index==i)
+ {
+ // the coefficient already exists and we found it !
+ return llElements[m_llCurrent].value;
+ }
+ else
+ {
+ // let's insert a new coefficient
+ ListEl& el = llElements[m_llSize];
+ el.value = Scalar(0);
+ el.index = i;
+ el.next = llElements[m_llCurrent].next;
+ llElements[m_llCurrent].next = m_llSize;
+ m_llSize++;
+ return el.value;
+ }
+ }
+ }
+}
+
+template<typename Scalar>
+Scalar AmbiVector<Scalar>::coeff(int i)
+{
+ if (m_mode==IsDense)
+ return m_buffer[i];
+ else
+ {
+ ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
+ ei_assert(m_mode==IsSparse);
+ if ((m_llSize==0) || (i<llElements[m_llStart].index))
+ {
+ return Scalar(0);
+ }
+ else
+ {
+ int elid = m_llStart;
+ while (elid >= 0 && llElements[elid].index<i)
+ elid = llElements[elid].next;
+
+ if (llElements[elid].index==i)
+ return llElements[m_llCurrent].value;
+ else
+ return Scalar(0);
+ }
+ }
+}
+
+/** Iterator over the nonzero coefficients */
+template<typename _Scalar>
+class AmbiVector<_Scalar>::Iterator
+{
+ public:
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ /** Default constructor
+ * \param vec the vector on which we iterate
+ * \param nonZeroReferenceValue reference value used to prune zero coefficients.
+ * In practice, the coefficient are compared to \a nonZeroReferenceValue * precision<Scalar>().
+ */
+ Iterator(const AmbiVector& vec, RealScalar nonZeroReferenceValue = RealScalar(0.1)) : m_vector(vec)
+ {
+ m_epsilon = nonZeroReferenceValue * precision<Scalar>();
+ m_isDense = m_vector.m_mode==IsDense;
+ if (m_isDense)
+ {
+ m_cachedIndex = m_vector.m_start-1;
+ ++(*this);
+ }
+ else
+ {
+ ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
+ m_currentEl = m_vector.m_llStart;
+ while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon)
+ m_currentEl = llElements[m_currentEl].next;
+ if (m_currentEl<0)
+ {
+ m_cachedIndex = -1;
+ }
+ else
+ {
+ m_cachedIndex = llElements[m_currentEl].index;
+ m_cachedValue = llElements[m_currentEl].value;
+ }
+ }
+ }
+
+ int index() const { return m_cachedIndex; }
+ Scalar value() const { return m_cachedValue; }
+
+ operator bool() const { return m_cachedIndex>=0; }
+
+ Iterator& operator++()
+ {
+ if (m_isDense)
+ {
+ do {
+ m_cachedIndex++;
+ } while (m_cachedIndex<m_vector.m_end && ei_abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon);
+ if (m_cachedIndex<m_vector.m_end)
+ m_cachedValue = m_vector.m_buffer[m_cachedIndex];
+ else
+ m_cachedIndex=-1;
+ }
+ else
+ {
+ ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
+ do {
+ m_currentEl = llElements[m_currentEl].next;
+ } while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon);
+ if (m_currentEl<0)
+ {
+ m_cachedIndex = -1;
+ }
+ else
+ {
+ m_cachedIndex = llElements[m_currentEl].index;
+ m_cachedValue = llElements[m_currentEl].value;
+ }
+ }
+ return *this;
+ }
+
+ protected:
+ const AmbiVector& m_vector; // the target vector
+ int m_currentEl; // the current element in sparse/linked-list mode
+ RealScalar m_epsilon; // epsilon used to prune zero coefficients
+ int m_cachedIndex; // current coordinate
+ Scalar m_cachedValue; // current value
+ bool m_isDense; // mode of the vector
+};
+
+
+#endif // EIGEN_AMBIVECTOR_H
diff --git a/Eigen/src/Sparse/BasicSparseCholesky.h b/Eigen/src/Sparse/BasicSparseCholesky.h
new file mode 100644
index 000000000..59c5b9913
--- /dev/null
+++ b/Eigen/src/Sparse/BasicSparseCholesky.h
@@ -0,0 +1,440 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_BASICSPARSECHOLESKY_H
+#define EIGEN_BASICSPARSECHOLESKY_H
+
+/** \ingroup Sparse_Module
+ *
+ * \class BasicSparseCholesky
+ *
+ * \brief Standard Cholesky decomposition of a matrix and associated features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
+ *
+ * \sa class Cholesky, class CholeskyWithoutSquareRoot
+ */
+template<typename MatrixType> class BasicSparseCholesky
+{
+ private:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
+
+ enum {
+ PacketSize = ei_packet_traits<Scalar>::size,
+ AlignmentMask = int(PacketSize)-1
+ };
+
+ public:
+
+ BasicSparseCholesky(const MatrixType& matrix)
+ : m_matrix(matrix.rows(), matrix.cols())
+ {
+ compute(matrix);
+ }
+
+ inline const MatrixType& matrixL(void) const { return m_matrix; }
+
+ /** \returns true if the matrix is positive definite */
+ inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
+
+// template<typename Derived>
+// typename Derived::Eval solve(const MatrixBase<Derived> &b) const;
+
+ void compute(const MatrixType& matrix);
+
+ protected:
+ /** \internal
+ * Used to compute and store L
+ * The strict upper part is not used and even not initialized.
+ */
+ MatrixType m_matrix;
+ bool m_isPositiveDefinite;
+
+ struct ListEl
+ {
+ int next;
+ int index;
+ Scalar value;
+ };
+};
+
+/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
+ */
+#ifdef IGEN_BASICSPARSECHOLESKY_H
+template<typename MatrixType>
+void BasicSparseCholesky<MatrixType>::compute(const MatrixType& a)
+{
+ assert(a.rows()==a.cols());
+ const int size = a.rows();
+ m_matrix.resize(size, size);
+ const RealScalar eps = ei_sqrt(precision<Scalar>());
+
+ // allocate a temporary vector for accumulations
+ AmbiVector<Scalar> tempVector(size);
+
+ // TODO estimate the number of nnz
+ m_matrix.startFill(a.nonZeros()*2);
+ for (int j = 0; j < size; ++j)
+ {
+// std::cout << j << "\n";
+ Scalar x = ei_real(a.coeff(j,j));
+ int endSize = size-j-1;
+
+ // TODO estimate the number of non zero entries
+// float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
+// float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
+// float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
+
+ // let's do a more accurate determination of the nnz ratio for the current column j of res
+ //float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
+ // FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
+// float ratioColRes = ratioRes;
+// if (ratioColRes>0.1)
+// tempVector.init(IsSparse);
+ tempVector.init(IsDense);
+ tempVector.setBounds(j+1,size);
+ tempVector.setZero();
+ // init with current matrix a
+ {
+ typename MatrixType::InnerIterator it(a,j);
+ ++it; // skip diagonal element
+ for (; it; ++it)
+ tempVector.coeffRef(it.index()) = it.value();
+ }
+ for (int k=0; k<j+1; ++k)
+ {
+ typename MatrixType::InnerIterator it(m_matrix, k);
+ while (it && it.index()<j)
+ ++it;
+ if (it && it.index()==j)
+ {
+ Scalar y = it.value();
+ x -= ei_abs2(y);
+ ++it; // skip j-th element, and process remaing column coefficients
+ tempVector.restart();
+ for (; it; ++it)
+ {
+ tempVector.coeffRef(it.index()) -= it.value() * y;
+ }
+ }
+ }
+ // copy the temporary vector to the respective m_matrix.col()
+ // while scaling the result by 1/real(x)
+ RealScalar rx = ei_sqrt(ei_real(x));
+ m_matrix.fill(j,j) = rx;
+ Scalar y = Scalar(1)/rx;
+ for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
+ {
+ m_matrix.fill(it.index(), j) = it.value() * y;
+ }
+ }
+ m_matrix.endFill();
+}
+
+
+#else
+
+template<typename MatrixType>
+void BasicSparseCholesky<MatrixType>::compute(const MatrixType& a)
+{
+ assert(a.rows()==a.cols());
+ const int size = a.rows();
+ m_matrix.resize(size, size);
+ const RealScalar eps = ei_sqrt(precision<Scalar>());
+
+ // allocate a temporary buffer
+ Scalar* buffer = new Scalar[size*2];
+
+
+ m_matrix.startFill(a.nonZeros()*2);
+
+// RealScalar x;
+// x = ei_real(a.coeff(0,0));
+// m_isPositiveDefinite = x > eps && ei_isMuchSmallerThan(ei_imag(a.coeff(0,0)), RealScalar(1));
+// m_matrix.fill(0,0) = ei_sqrt(x);
+// m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
+ for (int j = 0; j < size; ++j)
+ {
+// std::cout << j << " " << std::flush;
+// Scalar tmp = ei_real(a.coeff(j,j));
+// if (j>0)
+// tmp -= m_matrix.row(j).start(j).norm2();
+// x = ei_real(tmp);
+// std::cout << "x = " << x << "\n";
+// if (x < eps || (!ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1))))
+// {
+// m_isPositiveDefinite = false;
+// return;
+// }
+// m_matrix.fill(j,j) = x = ei_sqrt(x);
+
+ Scalar x = ei_real(a.coeff(j,j));
+// if (j>0)
+// x -= m_matrix.row(j).start(j).norm2();
+// RealScalar rx = ei_sqrt(ei_real(x));
+// m_matrix.fill(j,j) = rx;
+ int endSize = size-j-1;
+ /*if (endSize>0)*/ {
+ // Note that when all matrix columns have good alignment, then the following
+ // product is guaranteed to be optimal with respect to alignment.
+// m_matrix.col(j).end(endSize) =
+// (m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()).lazy();
+
+ // FIXME could use a.col instead of a.row
+// m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint()
+// - m_matrix.col(j).end(endSize) ) / x;
+
+ // make sure to call innerSize/outerSize since we fake the storage order.
+
+
+
+
+ // estimate the number of non zero entries
+// float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
+// float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
+// float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
+
+
+// for (int j1=0; j1<cols; ++j1)
+ {
+ // let's do a more accurate determination of the nnz ratio for the current column j of res
+ //float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
+ // FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
+// float ratioColRes = ratioRes;
+// if (ratioColRes>0.1)
+ if (true)
+ {
+ // dense path, the scalar * columns products are accumulated into a dense column
+ Scalar* __restrict__ tmp = buffer;
+ // set to zero
+ for (int k=j+1; k<size; ++k)
+ tmp[k] = 0;
+ // init with current matrix a
+ {
+ typename MatrixType::InnerIterator it(a,j);
+ ++it;
+ for (; it; ++it)
+ tmp[it.index()] = it.value();
+ }
+ for (int k=0; k<j+1; ++k)
+ {
+// Scalar y = m_matrix.coeff(j,k);
+// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(1)))
+// {
+ typename MatrixType::InnerIterator it(m_matrix, k);
+ while (it && it.index()<j)
+ ++it;
+ if (it && it.index()==j)
+ {
+ Scalar y = it.value();
+ x -= ei_abs2(y);
+// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(0.1)))
+ {
+ ++it;
+ for (; it; ++it)
+ {
+ tmp[it.index()] -= it.value() * y;
+ }
+ }
+ }
+ }
+ // copy the temporary to the respective m_matrix.col()
+ RealScalar rx = ei_sqrt(ei_real(x));
+ m_matrix.fill(j,j) = rx;
+ Scalar y = Scalar(1)/rx;
+ for (int k=j+1; k<size; ++k)
+ //if (tmp[k]!=0)
+ if (!ei_isMuchSmallerThan(ei_abs(tmp[k]),Scalar(0.01)))
+ m_matrix.fill(k, j) = tmp[k]*y;
+ }
+ else
+ {
+ ListEl* __restrict__ tmp = reinterpret_cast<ListEl*>(buffer);
+ // sparse path, the scalar * columns products are accumulated into a linked list
+ int tmp_size = 0;
+ int tmp_start = -1;
+
+ {
+ int tmp_el = tmp_start;
+ typename MatrixType::InnerIterator it(a,j);
+ if (it)
+ {
+ ++it;
+ for (; it; ++it)
+ {
+ Scalar v = it.value();
+ int id = it.index();
+ if (tmp_size==0)
+ {
+ tmp_start = 0;
+ tmp_el = 0;
+ tmp_size++;
+ tmp[0].value = v;
+ tmp[0].index = id;
+ tmp[0].next = -1;
+ }
+ else if (id<tmp[tmp_start].index)
+ {
+ tmp[tmp_size].value = v;
+ tmp[tmp_size].index = id;
+ tmp[tmp_size].next = tmp_start;
+ tmp_start = tmp_size;
+ tmp_el = tmp_start;
+ tmp_size++;
+ }
+ else
+ {
+ int nextel = tmp[tmp_el].next;
+ while (nextel >= 0 && tmp[nextel].index<=id)
+ {
+ tmp_el = nextel;
+ nextel = tmp[nextel].next;
+ }
+
+ if (tmp[tmp_el].index==id)
+ {
+ tmp[tmp_el].value = v;
+ }
+ else
+ {
+ tmp[tmp_size].value = v;
+ tmp[tmp_size].index = id;
+ tmp[tmp_size].next = tmp[tmp_el].next;
+ tmp[tmp_el].next = tmp_size;
+ tmp_size++;
+ }
+ }
+ }
+ }
+ }
+// for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
+ for (int k=0; k<j+1; ++k)
+ {
+// Scalar y = m_matrix.coeff(j,k);
+// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(1)))
+// {
+ int tmp_el = tmp_start;
+ typename MatrixType::InnerIterator it(m_matrix, k);
+ while (it && it.index()<j)
+ ++it;
+ if (it && it.index()==j)
+ {
+ Scalar y = it.value();
+ x -= ei_abs2(y);
+ for (; it; ++it)
+ {
+ Scalar v = -it.value() * y;
+ int id = it.index();
+ if (tmp_size==0)
+ {
+// std::cout << "insert because size==0\n";
+ tmp_start = 0;
+ tmp_el = 0;
+ tmp_size++;
+ tmp[0].value = v;
+ tmp[0].index = id;
+ tmp[0].next = -1;
+ }
+ else if (id<tmp[tmp_start].index)
+ {
+// std::cout << "insert because not in (0) " << id << " " << tmp[tmp_start].index << " " << tmp_start << "\n";
+ tmp[tmp_size].value = v;
+ tmp[tmp_size].index = id;
+ tmp[tmp_size].next = tmp_start;
+ tmp_start = tmp_size;
+ tmp_el = tmp_start;
+ tmp_size++;
+ }
+ else
+ {
+ int nextel = tmp[tmp_el].next;
+ while (nextel >= 0 && tmp[nextel].index<=id)
+ {
+ tmp_el = nextel;
+ nextel = tmp[nextel].next;
+ }
+
+ if (tmp[tmp_el].index==id)
+ {
+ tmp[tmp_el].value -= v;
+ }
+ else
+ {
+// std::cout << "insert because not in (1)\n";
+ tmp[tmp_size].value = v;
+ tmp[tmp_size].index = id;
+ tmp[tmp_size].next = tmp[tmp_el].next;
+ tmp[tmp_el].next = tmp_size;
+ tmp_size++;
+ }
+ }
+ }
+ }
+ }
+ RealScalar rx = ei_sqrt(ei_real(x));
+ m_matrix.fill(j,j) = rx;
+ Scalar y = Scalar(1)/rx;
+ int k = tmp_start;
+ while (k>=0)
+ {
+ if (!ei_isMuchSmallerThan(ei_abs(tmp[k].value),Scalar(0.01)))
+ {
+// std::cout << "fill " << tmp[k].index << "," << j << "\n";
+ m_matrix.fill(tmp[k].index, j) = tmp[k].value * y;
+ }
+ k = tmp[k].next;
+ }
+ }
+ }
+
+ }
+ }
+ m_matrix.endFill();
+}
+
+#endif
+
+/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
+ * In other words, it returns \f$ A^{-1} b \f$ computing
+ * \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
+ * \param b the column vector \f$ b \f$, which can also be a matrix.
+ *
+ * Example: \include Cholesky_solve.cpp
+ * Output: \verbinclude Cholesky_solve.out
+ *
+ * \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve()
+ */
+// template<typename MatrixType>
+// template<typename Derived>
+// typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const
+// {
+// const int size = m_matrix.rows();
+// ei_assert(size==b.rows());
+//
+// return m_matrix.adjoint().template part<Upper>().solveTriangular(matrixL().solveTriangular(b));
+// }
+
+#endif // EIGEN_BASICSPARSECHOLESKY_H
diff --git a/Eigen/src/Sparse/LinkedVectorMatrix.h b/Eigen/src/Sparse/LinkedVectorMatrix.h
index dc34aced6..cb7d2120c 100644
--- a/Eigen/src/Sparse/LinkedVectorMatrix.h
+++ b/Eigen/src/Sparse/LinkedVectorMatrix.h
@@ -149,6 +149,7 @@ class LinkedVectorMatrix
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
+// std::cout << " ll fill " << outer << "," << inner << "\n";
if (m_ends[outer]==0)
{
m_data[outer] = m_ends[outer] = new VectorChunk();
@@ -171,6 +172,29 @@ class LinkedVectorMatrix
inline void endFill() { }
+ void printDbg()
+ {
+ for (int j=0; j<m_data.size(); ++j)
+ {
+ VectorChunk* el = m_data[j];
+ while (el)
+ {
+ for (int i=0; i<el->size; ++i)
+ std::cout << j << "," << el->data[i].index << " = " << el->data[i].value << "\n";
+ el = el->next;
+ }
+ }
+ for (int j=0; j<m_data.size(); ++j)
+ {
+ InnerIterator it(*this,j);
+ while (it)
+ {
+ std::cout << j << "," << it.index() << " = " << it.value() << "\n";
+ ++it;
+ }
+ }
+ }
+
~LinkedVectorMatrix()
{
clear();
@@ -267,7 +291,16 @@ class LinkedVectorMatrix<Scalar,_Flags>::InnerIterator
: m_matrix(mat), m_el(mat.m_data[col]), m_it(0)
{}
- InnerIterator& operator++() { if (m_it<m_el->size) m_it++; else {m_el = m_el->next; m_it=0;}; return *this; }
+ InnerIterator& operator++()
+ {
+ m_it++;
+ if (m_it>=m_el->size)
+ {
+ m_el = m_el->next;
+ m_it = 0;
+ }
+ return *this;
+ }
Scalar value() { return m_el->data[m_it].value; }
diff --git a/Eigen/src/Sparse/SparseMatrix.h b/Eigen/src/Sparse/SparseMatrix.h
index b4c4fe563..480c92dcb 100644
--- a/Eigen/src/Sparse/SparseMatrix.h
+++ b/Eigen/src/Sparse/SparseMatrix.h
@@ -133,10 +133,10 @@ class SparseMatrix
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
-
+// std::cout << " fill " << outer << "," << inner << "\n";
if (m_outerIndex[outer+1]==0)
{
- int i=col;
+ int i = outer;
while (i>=0 && m_outerIndex[i]==0)
{
m_outerIndex[i] = m_data.size();
@@ -204,6 +204,7 @@ class SparseMatrix
inline SparseMatrix& operator=(const SparseMatrix& other)
{
+// std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
if (other.isRValue())
{
swap(other.const_cast_derived());
@@ -221,6 +222,7 @@ class SparseMatrix
template<typename OtherDerived>
inline SparseMatrix& operator=(const MatrixBase<OtherDerived>& other)
{
+// std::cout << "SparseMatrix& operator=(const MatrixBase<OtherDerived>& other)\n";
return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
}
diff --git a/Eigen/src/Sparse/SparseMatrixBase.h b/Eigen/src/Sparse/SparseMatrixBase.h
index 1dcf83c24..b03fb5cee 100644
--- a/Eigen/src/Sparse/SparseMatrixBase.h
+++ b/Eigen/src/Sparse/SparseMatrixBase.h
@@ -51,6 +51,7 @@ class SparseMatrixBase : public MatrixBase<Derived>
inline Derived& operator=(const Derived& other)
{
+// std::cout << "Derived& operator=(const Derived& other)\n";
if (other.isRValue())
derived().swap(other.const_cast_derived());
else
@@ -61,7 +62,9 @@ class SparseMatrixBase : public MatrixBase<Derived>
template<typename OtherDerived>
inline Derived& operator=(const MatrixBase<OtherDerived>& other)
{
+// std::cout << "Derived& operator=(const MatrixBase<OtherDerived>& other)\n";
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
+// std::cout << "eval transpose = " << transpose << "\n";
const int outerSize = other.outerSize();
typedef typename ei_meta_if<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::ret TempType;
TempType temp(other.rows(), other.cols());
@@ -88,6 +91,8 @@ class SparseMatrixBase : public MatrixBase<Derived>
template<typename OtherDerived>
inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
{
+// std::cout << typeid(OtherDerived).name() << "\n";
+// std::cout << Flags << " " << OtherDerived::Flags << "\n";
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
// std::cout << "eval transpose = " << transpose << "\n";
const int outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
diff --git a/Eigen/src/Sparse/SparseProduct.h b/Eigen/src/Sparse/SparseProduct.h
index 7be5ecefd..28b05f6a0 100644
--- a/Eigen/src/Sparse/SparseProduct.h
+++ b/Eigen/src/Sparse/SparseProduct.h
@@ -41,22 +41,22 @@ struct ProductReturnType<Lhs,Rhs,SparseProduct>
// type of the temporary to perform the transpose op
typedef typename ei_meta_if<TransposeLhs,
SparseMatrix<Scalar,0>,
- typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested;
+ const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested;
typedef typename ei_meta_if<TransposeRhs,
SparseMatrix<Scalar,0>,
- typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
+ const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
- typedef Product<typename ei_unconst<LhsNested>::type,
- typename ei_unconst<RhsNested>::type, SparseProduct> Type;
+ typedef Product<LhsNested,
+ RhsNested, SparseProduct> Type;
};
template<typename LhsNested, typename RhsNested>
struct ei_traits<Product<LhsNested, RhsNested, SparseProduct> >
{
// clean the nested types:
- typedef typename ei_unconst<typename ei_unref<LhsNested>::type>::type _LhsNested;
- typedef typename ei_unconst<typename ei_unref<RhsNested>::type>::type _RhsNested;
+ typedef typename ei_cleantype<LhsNested>::type _LhsNested;
+ typedef typename ei_cleantype<RhsNested>::type _RhsNested;
typedef typename _LhsNested::Scalar Scalar;
enum {
@@ -118,8 +118,8 @@ template<typename LhsNested, typename RhsNested> class Product<LhsNested,RhsNest
const _LhsNested& rhs() const { return m_rhs; }
protected:
- const LhsNested m_lhs;
- const RhsNested m_rhs;
+ LhsNested m_lhs;
+ RhsNested m_rhs;
};
template<typename Lhs, typename Rhs, typename ResultType,
@@ -133,23 +133,16 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
- struct ListEl
- {
- int next;
- int index;
- Scalar value;
- };
-
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// make sure to call innerSize/outerSize since we fake the storage order.
int rows = lhs.innerSize();
int cols = rhs.outerSize();
int size = lhs.outerSize();
- ei_assert(size == rhs.rows());
+ ei_assert(size == rhs.innerSize());
// allocate a temporary buffer
- Scalar* buffer = new Scalar[rows];
+ AmbiVector<Scalar> tempVector(rows);
// estimate the number of non zero entries
float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
@@ -164,89 +157,19 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
float ratioColRes = ratioRes;
- if (ratioColRes>0.1)
+ tempVector.init(ratioColRes);
+ tempVector.setZero();
+ for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
- // dense path, the scalar * columns products are accumulated into a dense column
- Scalar* __restrict__ tmp = buffer;
- // set to zero
- for (int k=0; k<rows; ++k)
- tmp[k] = 0;
- for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
- {
- // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
- Scalar x = rhsIt.value();
- for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
- {
- tmp[lhsIt.index()] += lhsIt.value() * x;
- }
- }
- // copy the temporary to the respective res.col()
- for (int k=0; k<rows; ++k)
- if (tmp[k]!=0)
- res.fill(k, j) = tmp[k];
- }
- else
- {
- ListEl* __restrict__ tmp = reinterpret_cast<ListEl*>(buffer);
- // sparse path, the scalar * columns products are accumulated into a linked list
- int tmp_size = 0;
- int tmp_start = -1;
- for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
- {
- int tmp_el = tmp_start;
- for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
- {
- Scalar v = lhsIt.value() * rhsIt.value();
- int id = lhsIt.index();
- if (tmp_size==0)
- {
- tmp_start = 0;
- tmp_el = 0;
- tmp_size++;
- tmp[0].value = v;
- tmp[0].index = id;
- tmp[0].next = -1;
- }
- else if (id<tmp[tmp_start].index)
- {
- tmp[tmp_size].value = v;
- tmp[tmp_size].index = id;
- tmp[tmp_size].next = tmp_start;
- tmp_start = tmp_size;
- tmp_size++;
- }
- else
- {
- int nextel = tmp[tmp_el].next;
- while (nextel >= 0 && tmp[nextel].index<=id)
- {
- tmp_el = nextel;
- nextel = tmp[nextel].next;
- }
-
- if (tmp[tmp_el].index==id)
- {
- tmp[tmp_el].value += v;
- }
- else
- {
- tmp[tmp_size].value = v;
- tmp[tmp_size].index = id;
- tmp[tmp_size].next = tmp[tmp_el].next;
- tmp[tmp_el].next = tmp_size;
- tmp_size++;
- }
- }
- }
- }
- int k = tmp_start;
- while (k>=0)
+ // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
+ Scalar x = rhsIt.value();
+ for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
- if (tmp[k].value!=0)
- res.fill(tmp[k].index, j) = tmp[k].value;
- k = tmp[k].next;
+ tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
}
}
+ for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
+ res.fill(it.index(), j) = it.value();
}
res.endFill();
}
@@ -269,7 +192,7 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
- // let's transpose the product and fake the matrices are column major
+ // let's transpose the product to get a column x column product
ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,ColMajor>::run(rhs, lhs, res);
}
};
@@ -280,8 +203,11 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
- // let's transpose the product and fake the matrices are column major
- ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,RowMajor>::run(rhs, lhs, res);
+ // let's transpose the product to get a column x column product
+ SparseTemporaryType _res(res.cols(), res.rows());
+ ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,ColMajor>
+ ::run(rhs, lhs, _res);
+ res = _res.transpose();
}
};