diff options
author | Gael Guennebaud <g.gael@free.fr> | 2008-10-03 13:22:54 +0000 |
---|---|---|
committer | Gael Guennebaud <g.gael@free.fr> | 2008-10-03 13:22:54 +0000 |
commit | 1fc503e3ce7dd57aef11200149c61ffefcc4797e (patch) | |
tree | c31797f2b578a84317c190903000d2a41d5fdbd5 /Eigen/src | |
parent | d907cd4410618628be0ab0f00d7e320014c61555 (diff) |
add EigenSolver::eigenvectors() method for non symmetric matrices.
However, for matrices larger than 5, it seems there is constantly a quite large error for a very
few coefficients. I don't what's going on, but that's certainely not due to numerical issues only.
(also note that the test with the pseudo eigenvectors fails the same way)
Diffstat (limited to 'Eigen/src')
-rw-r--r-- | Eigen/src/QR/EigenSolver.h | 45 |
1 files changed, 39 insertions, 6 deletions
diff --git a/Eigen/src/QR/EigenSolver.h b/Eigen/src/QR/EigenSolver.h index 1b392cbb9..d7d891951 100644 --- a/Eigen/src/QR/EigenSolver.h +++ b/Eigen/src/QR/EigenSolver.h @@ -48,6 +48,7 @@ template<typename _MatrixType> class EigenSolver typedef typename NumTraits<Scalar>::Real RealScalar; typedef std::complex<RealScalar> Complex; typedef Matrix<Complex, MatrixType::ColsAtCompileTime, 1> EigenvalueType; + typedef Matrix<Complex, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> EigenvectorType; typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType; typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX; @@ -58,8 +59,8 @@ template<typename _MatrixType> class EigenSolver compute(matrix); } - // TODO compute the complex eigen vectors - // MatrixType eigenvectors(void) const { return m_eivec; } + + EigenvectorType eigenvectors(void) const; /** \returns a real matrix V of pseudo eigenvectors. * @@ -94,10 +95,6 @@ template<typename _MatrixType> class EigenSolver */ const MatrixType& pseudoEigenvectors() const { return m_eivec; } - /** \returns the real block diagonal matrix D of the eigenvalues. - * - * See pseudoEigenvectors() for the details. - */ MatrixType pseudoEigenvalueMatrix() const; /** \returns the eigenvalues as a column vector */ @@ -115,6 +112,10 @@ template<typename _MatrixType> class EigenSolver EigenvalueType m_eivalues; }; +/** \returns the real block diagonal matrix D of the eigenvalues. + * + * See pseudoEigenvectors() for the details. + */ template<typename MatrixType> MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const { @@ -134,6 +135,38 @@ MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const return matD; } +/** \returns the normalized complex eigenvectors as a matrix of column vectors. + * + * \sa eigenvalues(), pseudoEigenvectors() + */ +template<typename MatrixType> +typename EigenSolver<MatrixType>::EigenvectorType EigenSolver<MatrixType>::eigenvectors(void) const +{ + int n = m_eivec.cols(); + EigenvectorType matV(n,n); + for (int j=0; j<n; j++) + { + if (ei_isMuchSmallerThan(ei_abs(ei_imag(m_eivalues.coeff(j))), ei_abs(ei_real(m_eivalues.coeff(j))))) + { + // we have a real eigen value + matV.col(j) = m_eivec.col(j); + } + else + { + // we have a pair of complex eigen values + for (int i=0; i<n; i++) + { + matV.coeffRef(i,j) = Complex(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1)); + matV.coeffRef(i,j+1) = Complex(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1)); + } + matV.col(j).normalize(); + matV.col(j+1).normalize(); + j++; + } + } + return matV; +} + template<typename MatrixType> void EigenSolver<MatrixType>::compute(const MatrixType& matrix) { |