aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SVD
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-31 22:26:15 -0400
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-31 22:26:15 -0400
commit6e4e94ff3266f8d85adbfe6556e612a2ff9a7e68 (patch)
tree33a1923d88f095df3f98edd80cb1b02fc7799b91 /Eigen/src/SVD
parent29c6b2452dbe82cd49aa701921f2fa5a20017cc0 (diff)
* JacobiSVD:
- support complex numbers - big rewrite of the 2x2 kernel, much more robust * Jacobi: - fix weirdness in initial design, e.g. applyJacobiOnTheRight actually did the inverse transformation - fully support complex numbers - fix logic to decide whether to vectorize - remove several clumsy methods fix for complex numbers
Diffstat (limited to 'Eigen/src/SVD')
-rw-r--r--Eigen/src/SVD/JacobiSVD.h258
-rw-r--r--Eigen/src/SVD/JacobiSquareSVD.h169
2 files changed, 258 insertions, 169 deletions
diff --git a/Eigen/src/SVD/JacobiSVD.h b/Eigen/src/SVD/JacobiSVD.h
new file mode 100644
index 000000000..e5e7fb6fc
--- /dev/null
+++ b/Eigen/src/SVD/JacobiSVD.h
@@ -0,0 +1,258 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_JACOBISVD_H
+#define EIGEN_JACOBISVD_H
+
+/** \ingroup SVD_Module
+ * \nonstableyet
+ *
+ * \class JacobiSVD
+ *
+ * \brief Jacobi SVD decomposition of a square matrix
+ *
+ * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
+ * \param ComputeU whether the U matrix should be computed
+ * \param ComputeV whether the V matrix should be computed
+ *
+ * \sa MatrixBase::jacobiSvd()
+ */
+template<typename MatrixType, unsigned int Options> class JacobiSVD
+{
+ private:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ enum {
+ ComputeU = 1,
+ ComputeV = 1,
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ DiagSizeAtCompileTime = EIGEN_ENUM_MIN(RowsAtCompileTime,ColsAtCompileTime),
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
+ MaxDiagSizeAtCompileTime = EIGEN_ENUM_MIN(MaxRowsAtCompileTime,MaxColsAtCompileTime),
+ MatrixOptions = MatrixType::Options
+ };
+
+ typedef Matrix<Scalar, Dynamic, Dynamic, MatrixOptions> DummyMatrixType;
+ typedef typename ei_meta_if<ComputeU,
+ Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
+ MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
+ DummyMatrixType>::ret MatrixUType;
+ typedef typename ei_meta_if<ComputeV,
+ Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
+ MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>,
+ DummyMatrixType>::ret MatrixVType;
+ typedef Matrix<RealScalar, DiagSizeAtCompileTime, 1,
+ Options, MaxDiagSizeAtCompileTime, 1> SingularValuesType;
+ typedef Matrix<Scalar, 1, RowsAtCompileTime, MatrixOptions, 1, MaxRowsAtCompileTime> RowType;
+ typedef Matrix<Scalar, RowsAtCompileTime, 1, MatrixOptions, MaxRowsAtCompileTime, 1> ColType;
+
+ public:
+
+ JacobiSVD() : m_isInitialized(false) {}
+
+ JacobiSVD(const MatrixType& matrix) : m_isInitialized(false)
+ {
+ compute(matrix);
+ }
+
+ JacobiSVD& compute(const MatrixType& matrix);
+
+ const MatrixUType& matrixU() const
+ {
+ ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
+ return m_matrixU;
+ }
+
+ const SingularValuesType& singularValues() const
+ {
+ ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
+ return m_singularValues;
+ }
+
+ const MatrixUType& matrixV() const
+ {
+ ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
+ return m_matrixV;
+ }
+
+ protected:
+ MatrixUType m_matrixU;
+ MatrixVType m_matrixV;
+ SingularValuesType m_singularValues;
+ bool m_isInitialized;
+
+ template<typename _MatrixType, unsigned int _Options, bool _IsComplex>
+ friend struct ei_svd_precondition_2x2_block_to_be_real;
+};
+
+template<typename MatrixType, unsigned int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
+struct ei_svd_precondition_2x2_block_to_be_real
+{
+ static void run(MatrixType&, JacobiSVD<MatrixType, Options>&, int, int) {}
+};
+
+template<typename MatrixType, unsigned int Options>
+struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
+{
+ typedef JacobiSVD<MatrixType, Options> SVD;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+
+ enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
+ static void run(MatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, int p, int q)
+ {
+ Scalar c, s, z;
+ RealScalar n = ei_sqrt(ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(q,p)));
+ if(n==0)
+ {
+ z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
+ work_matrix.row(p) *= z;
+ if(ComputeU) svd.m_matrixU.col(p) *= ei_conj(z);
+ z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
+ work_matrix.row(q) *= z;
+ if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
+ }
+ else
+ {
+ c = ei_conj(work_matrix.coeff(p,p)) / n;
+ s = work_matrix.coeff(q,p) / n;
+ work_matrix.applyJacobiOnTheLeft(p,q,c,s);
+ if(ComputeU) svd.m_matrixU.applyJacobiOnTheRight(p,q,ei_conj(c),-s);
+ if(work_matrix.coeff(p,q) != Scalar(0))
+ {
+ Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
+ work_matrix.col(q) *= z;
+ if(ComputeV) svd.m_matrixV.col(q) *= z;
+ }
+ if(work_matrix.coeff(q,q) != Scalar(0))
+ {
+ z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
+ work_matrix.row(q) *= z;
+ if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
+ }
+ }
+ }
+};
+
+template<typename MatrixType, typename RealScalar>
+void ei_real_2x2_jacobi_svd(const MatrixType& matrix, int p, int q,
+ RealScalar *c_left, RealScalar *s_left,
+ RealScalar *c_right, RealScalar *s_right)
+{
+ Matrix<RealScalar,2,2> m;
+ m << ei_real(matrix.coeff(p,p)), ei_real(matrix.coeff(p,q)),
+ ei_real(matrix.coeff(q,p)), ei_real(matrix.coeff(q,q));
+ RealScalar c1, s1;
+ RealScalar t = m.coeff(0,0) + m.coeff(1,1);
+ RealScalar d = m.coeff(1,0) - m.coeff(0,1);
+ if(t == RealScalar(0))
+ {
+ c1 = 0;
+ s1 = d > 0 ? 1 : -1;
+ }
+ else
+ {
+ RealScalar u = d / t;
+ c1 = RealScalar(1) / ei_sqrt(1 + ei_abs2(u));
+ s1 = c1 * u;
+ }
+ m.applyJacobiOnTheLeft(0,1,c1,s1);
+ RealScalar c2, s2;
+ m.makeJacobi(0,1,&c2,&s2);
+ *c_left = c1*c2 + s1*s2;
+ *s_left = s1*c2 - c1*s2;
+ *c_right = c2;
+ *s_right = s2;
+}
+
+template<typename MatrixType, unsigned int Options>
+JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
+{
+ MatrixType work_matrix(matrix);
+ int size = matrix.rows();
+ if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
+ if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
+ m_singularValues.resize(size);
+ const RealScalar precision = 2 * epsilon<Scalar>();
+
+sweep_again:
+ for(int p = 1; p < size; ++p)
+ {
+ for(int q = 0; q < p; ++q)
+ {
+ if(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
+ > std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
+ {
+ ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(work_matrix, *this, p, q);
+
+ RealScalar c_left, s_left, c_right, s_right;
+ ei_real_2x2_jacobi_svd(work_matrix, p, q, &c_left, &s_left, &c_right, &s_right);
+
+ work_matrix.applyJacobiOnTheLeft(p,q,c_left,s_left);
+ if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,c_left,-s_left);
+
+ work_matrix.applyJacobiOnTheRight(p,q,c_right,s_right);
+ if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c_right,s_right);
+ }
+ }
+ }
+
+ RealScalar biggestOnDiag = work_matrix.diagonal().cwise().abs().maxCoeff();
+ RealScalar maxAllowedOffDiag = biggestOnDiag * precision;
+ for(int p = 0; p < size; ++p)
+ {
+ for(int q = 0; q < p; ++q)
+ if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
+ goto sweep_again;
+ for(int q = p+1; q < size; ++q)
+ if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
+ goto sweep_again;
+ }
+
+ for(int i = 0; i < size; ++i)
+ {
+ RealScalar a = ei_abs(work_matrix.coeff(i,i));
+ m_singularValues.coeffRef(i) = a;
+ if(ComputeU && (a!=RealScalar(0))) m_matrixU.col(i) *= work_matrix.coeff(i,i)/a;
+ }
+
+ for(int i = 0; i < size; i++)
+ {
+ int pos;
+ m_singularValues.end(size-i).maxCoeff(&pos);
+ if(pos)
+ {
+ pos += i;
+ std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
+ if(ComputeU) m_matrixU.col(pos).swap(m_matrixU.col(i));
+ if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
+ }
+ }
+
+ m_isInitialized = true;
+ return *this;
+}
+#endif // EIGEN_JACOBISVD_H
diff --git a/Eigen/src/SVD/JacobiSquareSVD.h b/Eigen/src/SVD/JacobiSquareSVD.h
deleted file mode 100644
index f21c9edca..000000000
--- a/Eigen/src/SVD/JacobiSquareSVD.h
+++ /dev/null
@@ -1,169 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_JACOBISQUARESVD_H
-#define EIGEN_JACOBISQUARESVD_H
-
-/** \ingroup SVD_Module
- * \nonstableyet
- *
- * \class JacobiSquareSVD
- *
- * \brief Jacobi SVD decomposition of a square matrix
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- * \param ComputeU whether the U matrix should be computed
- * \param ComputeV whether the V matrix should be computed
- *
- * \sa MatrixBase::jacobiSvd()
- */
-template<typename MatrixType, bool ComputeU, bool ComputeV> class JacobiSquareSVD
-{
- private:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- Options = MatrixType::Options
- };
-
- typedef Matrix<Scalar, Dynamic, Dynamic, Options> DummyMatrixType;
- typedef typename ei_meta_if<ComputeU,
- Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
- DummyMatrixType>::ret MatrixUType;
- typedef typename Diagonal<MatrixType,0>::PlainMatrixType SingularValuesType;
- typedef Matrix<Scalar, 1, RowsAtCompileTime, Options, 1, MaxRowsAtCompileTime> RowType;
- typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> ColType;
-
- public:
-
- JacobiSquareSVD() : m_isInitialized(false) {}
-
- JacobiSquareSVD(const MatrixType& matrix) : m_isInitialized(false)
- {
- compute(matrix);
- }
-
- JacobiSquareSVD& compute(const MatrixType& matrix);
-
- const MatrixUType& matrixU() const
- {
- ei_assert(m_isInitialized && "SVD is not initialized.");
- return m_matrixU;
- }
-
- const SingularValuesType& singularValues() const
- {
- ei_assert(m_isInitialized && "SVD is not initialized.");
- return m_singularValues;
- }
-
- const MatrixUType& matrixV() const
- {
- ei_assert(m_isInitialized && "SVD is not initialized.");
- return m_matrixV;
- }
-
- protected:
- MatrixUType m_matrixU;
- MatrixUType m_matrixV;
- SingularValuesType m_singularValues;
- bool m_isInitialized;
-};
-
-template<typename MatrixType, bool ComputeU, bool ComputeV>
-JacobiSquareSVD<MatrixType, ComputeU, ComputeV>& JacobiSquareSVD<MatrixType, ComputeU, ComputeV>::compute(const MatrixType& matrix)
-{
- MatrixType work_matrix(matrix);
- int size = matrix.rows();
- if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
- if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
- m_singularValues.resize(size);
- const RealScalar precision = 2 * epsilon<Scalar>();
-
-sweep_again:
- for(int p = 1; p < size; ++p)
- {
- for(int q = 0; q < p; ++q)
- {
- Scalar c, s;
- while(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
- > std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
- {
- if(work_matrix.makeJacobiForAtA(p,q,&c,&s))
- {
- work_matrix.applyJacobiOnTheRight(p,q,c,s);
- if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c,s);
- }
- if(work_matrix.makeJacobiForAAt(p,q,&c,&s))
- {
- ei_normalizeJacobi(&c, &s, work_matrix.coeff(p,p), work_matrix.coeff(q,p)),
- work_matrix.applyJacobiOnTheLeft(p,q,c,s);
- if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,c,s);
- }
- }
- }
- }
-
- RealScalar biggestOnDiag = work_matrix.diagonal().cwise().abs().maxCoeff();
- RealScalar maxAllowedOffDiag = biggestOnDiag * precision;
- for(int p = 0; p < size; ++p)
- {
- for(int q = 0; q < p; ++q)
- if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
- goto sweep_again;
- for(int q = p+1; q < size; ++q)
- if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
- goto sweep_again;
- }
-
- m_singularValues = work_matrix.diagonal().cwise().abs();
- RealScalar biggestSingularValue = m_singularValues.maxCoeff();
-
- for(int i = 0; i < size; ++i)
- {
- RealScalar a = ei_abs(work_matrix.coeff(i,i));
- m_singularValues.coeffRef(i) = a;
- if(ComputeU && !ei_isMuchSmallerThan(a, biggestSingularValue)) m_matrixU.col(i) *= work_matrix.coeff(i,i)/a;
- }
-
- for(int i = 0; i < size; i++)
- {
- int pos;
- m_singularValues.end(size-i).maxCoeff(&pos);
- if(pos)
- {
- pos += i;
- std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
- if(ComputeU) m_matrixU.col(pos).swap(m_matrixU.col(i));
- if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
- }
- }
-
- m_isInitialized = true;
- return *this;
-}
-#endif // EIGEN_JACOBISQUARESVD_H