1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H
/** \ingroup SVD_Module
* \nonstableyet
*
* \class JacobiSVD
*
* \brief Jacobi SVD decomposition of a square matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param ComputeU whether the U matrix should be computed
* \param ComputeV whether the V matrix should be computed
*
* \sa MatrixBase::jacobiSvd()
*/
template<typename MatrixType, unsigned int Options> class JacobiSVD
{
private:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
enum {
ComputeU = 1,
ComputeV = 1,
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(RowsAtCompileTime,ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_ENUM_MIN(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
typedef Matrix<Scalar, Dynamic, Dynamic, MatrixOptions> DummyMatrixType;
typedef typename ei_meta_if<ComputeU,
Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
DummyMatrixType>::ret MatrixUType;
typedef typename ei_meta_if<ComputeV,
Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>,
DummyMatrixType>::ret MatrixVType;
typedef Matrix<RealScalar, DiagSizeAtCompileTime, 1,
Options, MaxDiagSizeAtCompileTime, 1> SingularValuesType;
typedef Matrix<Scalar, 1, RowsAtCompileTime, MatrixOptions, 1, MaxRowsAtCompileTime> RowType;
typedef Matrix<Scalar, RowsAtCompileTime, 1, MatrixOptions, MaxRowsAtCompileTime, 1> ColType;
public:
JacobiSVD() : m_isInitialized(false) {}
JacobiSVD(const MatrixType& matrix) : m_isInitialized(false)
{
compute(matrix);
}
JacobiSVD& compute(const MatrixType& matrix);
const MatrixUType& matrixU() const
{
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
return m_matrixU;
}
const SingularValuesType& singularValues() const
{
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
return m_singularValues;
}
const MatrixUType& matrixV() const
{
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
return m_matrixV;
}
protected:
MatrixUType m_matrixU;
MatrixVType m_matrixV;
SingularValuesType m_singularValues;
bool m_isInitialized;
template<typename _MatrixType, unsigned int _Options, bool _IsComplex>
friend struct ei_svd_precondition_2x2_block_to_be_real;
};
template<typename MatrixType, unsigned int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct ei_svd_precondition_2x2_block_to_be_real
{
static void run(MatrixType&, JacobiSVD<MatrixType, Options>&, int, int) {}
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
static void run(MatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, int p, int q)
{
Scalar c, s, z;
RealScalar n = ei_sqrt(ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(q,p)));
if(n==0)
{
z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(ComputeU) svd.m_matrixU.col(p) *= ei_conj(z);
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
}
else
{
c = ei_conj(work_matrix.coeff(p,p)) / n;
s = work_matrix.coeff(q,p) / n;
work_matrix.applyJacobiOnTheLeft(p,q,c,s);
if(ComputeU) svd.m_matrixU.applyJacobiOnTheRight(p,q,ei_conj(c),-s);
if(work_matrix.coeff(p,q) != Scalar(0))
{
Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.col(q) *= z;
if(ComputeV) svd.m_matrixV.col(q) *= z;
}
if(work_matrix.coeff(q,q) != Scalar(0))
{
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
}
}
}
};
template<typename MatrixType, typename RealScalar>
void ei_real_2x2_jacobi_svd(const MatrixType& matrix, int p, int q,
RealScalar *c_left, RealScalar *s_left,
RealScalar *c_right, RealScalar *s_right)
{
Matrix<RealScalar,2,2> m;
m << ei_real(matrix.coeff(p,p)), ei_real(matrix.coeff(p,q)),
ei_real(matrix.coeff(q,p)), ei_real(matrix.coeff(q,q));
RealScalar c1, s1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(t == RealScalar(0))
{
c1 = 0;
s1 = d > 0 ? 1 : -1;
}
else
{
RealScalar u = d / t;
c1 = RealScalar(1) / ei_sqrt(1 + ei_abs2(u));
s1 = c1 * u;
}
m.applyJacobiOnTheLeft(0,1,c1,s1);
RealScalar c2, s2;
m.makeJacobi(0,1,&c2,&s2);
*c_left = c1*c2 + s1*s2;
*s_left = s1*c2 - c1*s2;
*c_right = c2;
*s_right = s2;
}
template<typename MatrixType, unsigned int Options>
JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
{
MatrixType work_matrix(matrix);
int size = matrix.rows();
if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
m_singularValues.resize(size);
const RealScalar precision = 2 * epsilon<Scalar>();
sweep_again:
for(int p = 1; p < size; ++p)
{
for(int q = 0; q < p; ++q)
{
if(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
> std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
{
ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(work_matrix, *this, p, q);
RealScalar c_left, s_left, c_right, s_right;
ei_real_2x2_jacobi_svd(work_matrix, p, q, &c_left, &s_left, &c_right, &s_right);
work_matrix.applyJacobiOnTheLeft(p,q,c_left,s_left);
if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,c_left,-s_left);
work_matrix.applyJacobiOnTheRight(p,q,c_right,s_right);
if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c_right,s_right);
}
}
}
RealScalar biggestOnDiag = work_matrix.diagonal().cwise().abs().maxCoeff();
RealScalar maxAllowedOffDiag = biggestOnDiag * precision;
for(int p = 0; p < size; ++p)
{
for(int q = 0; q < p; ++q)
if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
goto sweep_again;
for(int q = p+1; q < size; ++q)
if(ei_abs(work_matrix.coeff(p,q)) > maxAllowedOffDiag)
goto sweep_again;
}
for(int i = 0; i < size; ++i)
{
RealScalar a = ei_abs(work_matrix.coeff(i,i));
m_singularValues.coeffRef(i) = a;
if(ComputeU && (a!=RealScalar(0))) m_matrixU.col(i) *= work_matrix.coeff(i,i)/a;
}
for(int i = 0; i < size; i++)
{
int pos;
m_singularValues.end(size-i).maxCoeff(&pos);
if(pos)
{
pos += i;
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
if(ComputeU) m_matrixU.col(pos).swap(m_matrixU.col(i));
if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
}
}
m_isInitialized = true;
return *this;
}
#endif // EIGEN_JACOBISVD_H
|