diff options
author | Gael Guennebaud <g.gael@free.fr> | 2009-07-28 17:35:07 +0200 |
---|---|---|
committer | Gael Guennebaud <g.gael@free.fr> | 2009-07-28 17:35:07 +0200 |
commit | 54804eb62642ab1be510e41db9b573c6f6151bf2 (patch) | |
tree | 76eda2dedb4a66be0072425ebd110546211f1f71 /Eigen/src/Core | |
parent | 264fe82c655a26f3c3ab5057684dbc51cf533056 (diff) | |
parent | 562864bcfb363f603f40ce716c49539fcd1565d3 (diff) |
synch with main branch
Diffstat (limited to 'Eigen/src/Core')
-rw-r--r-- | Eigen/src/Core/Block.h | 4 | ||||
-rw-r--r-- | Eigen/src/Core/Dot.h | 148 | ||||
-rw-r--r-- | Eigen/src/Core/Functors.h | 3 | ||||
-rw-r--r-- | Eigen/src/Core/MapBase.h | 10 | ||||
-rw-r--r-- | Eigen/src/Core/Matrix.h | 10 | ||||
-rw-r--r-- | Eigen/src/Core/MatrixBase.h | 1 | ||||
-rw-r--r-- | Eigen/src/Core/NumTraits.h | 8 | ||||
-rw-r--r-- | Eigen/src/Core/Product.h | 12 | ||||
-rw-r--r-- | Eigen/src/Core/StableNorm.h | 194 |
9 files changed, 227 insertions, 163 deletions
diff --git a/Eigen/src/Core/Block.h b/Eigen/src/Core/Block.h index ffe065e8b..cf7730170 100644 --- a/Eigen/src/Core/Block.h +++ b/Eigen/src/Core/Block.h @@ -33,8 +33,8 @@ * \param MatrixType the type of the object in which we are taking a block * \param BlockRows the number of rows of the block we are taking at compile time (optional) * \param BlockCols the number of columns of the block we are taking at compile time (optional) - * \param _PacketAccess allows to enforce aligned loads and stores if set to ForceAligned. - * The default is AsRequested. This parameter is internaly used by Eigen + * \param _PacketAccess allows to enforce aligned loads and stores if set to \b ForceAligned. + * The default is \b AsRequested. This parameter is internaly used by Eigen * in expressions such as \code mat.block() += other; \endcode and most of * the time this is the only way it is used. * \param _DirectAccessStatus \internal used for partial specialization diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h index c5f2e8505..9e84d72bb 100644 --- a/Eigen/src/Core/Dot.h +++ b/Eigen/src/Core/Dot.h @@ -292,154 +292,6 @@ inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase< return ei_sqrt(squaredNorm()); } -/** \returns the \em l2 norm of \c *this using a numerically more stable - * algorithm. - * - * \sa norm(), dot(), squaredNorm(), blueNorm() - */ -template<typename Derived> -inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real -MatrixBase<Derived>::stableNorm() const -{ - return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>()); -} - -/** \internal Computes ibeta^iexp by binary expansion of iexp, - * exact if ibeta is the machine base */ -template<typename T> inline T bexp(int ibeta, int iexp) -{ - T tbeta = T(ibeta); - T res = 1.0; - int n = iexp; - if (n<0) - { - n = - n; - tbeta = 1.0/tbeta; - } - for(;;) - { - if ((n % 2)==0) - res = res * tbeta; - n = n/2; - if (n==0) return res; - tbeta = tbeta*tbeta; - } - return res; -} - -/** \returns the \em l2 norm of \c *this using the Blue's algorithm. - * A Portable Fortran Program to Find the Euclidean Norm of a Vector, - * ACM TOMS, Vol 4, Issue 1, 1978. - * - * \sa norm(), dot(), squaredNorm(), stableNorm() - */ -template<typename Derived> -inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real -MatrixBase<Derived>::blueNorm() const -{ - static int nmax; - static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr; - int n; - Scalar ax, abig, amed, asml; - - if(nmax <= 0) - { - int nbig, ibeta, it, iemin, iemax, iexp; - Scalar abig, eps; - // This program calculates the machine-dependent constants - // bl, b2, slm, s2m, relerr overfl, nmax - // from the "basic" machine-dependent numbers - // nbig, ibeta, it, iemin, iemax, rbig. - // The following define the basic machine-dependent constants. - // For portability, the PORT subprograms "ilmaeh" and "rlmach" - // are used. For any specific computer, each of the assignment - // statements can be replaced - nbig = std::numeric_limits<int>::max(); // largest integer - ibeta = NumTraits<Scalar>::Base; // base for floating-point numbers - it = NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa - iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent - iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent - rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number - - // Check the basic machine-dependent constants. - if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) - || (it<=4 && ibeta <= 3 ) || it<2) - { - ei_assert(false && "the algorithm cannot be guaranteed on this computer"); - } - iexp = -((1-iemin)/2); - b1 = bexp<Scalar>(ibeta, iexp); // lower boundary of midrange - iexp = (iemax + 1 - it)/2; - b2 = bexp<Scalar>(ibeta,iexp); // upper boundary of midrange - - iexp = (2-iemin)/2; - s1m = bexp<Scalar>(ibeta,iexp); // scaling factor for lower range - iexp = - ((iemax+it)/2); - s2m = bexp<Scalar>(ibeta,iexp); // scaling factor for upper range - - overfl = rbig*s2m; // overfow boundary for abig - eps = bexp<Scalar>(ibeta, 1-it); - relerr = ei_sqrt(eps); // tolerance for neglecting asml - abig = 1.0/eps - 1.0; - if (Scalar(nbig)>abig) nmax = abig; // largest safe n - else nmax = nbig; - } - n = size(); - if(n==0) - return 0; - asml = Scalar(0); - amed = Scalar(0); - abig = Scalar(0); - for(int j=0; j<n; ++j) - { - ax = ei_abs(coeff(j)); - if(ax > b2) abig += ei_abs2(ax*s2m); - else if(ax < b1) asml += ei_abs2(ax*s1m); - else amed += ei_abs2(ax); - } - if(abig > Scalar(0)) - { - abig = ei_sqrt(abig); - if(abig > overfl) - { - ei_assert(false && "overflow"); - return rbig; - } - if(amed > Scalar(0)) - { - abig = abig/s2m; - amed = ei_sqrt(amed); - } - else - { - return abig/s2m; - } - - } - else if(asml > Scalar(0)) - { - if (amed > Scalar(0)) - { - abig = ei_sqrt(amed); - amed = ei_sqrt(asml) / s1m; - } - else - { - return ei_sqrt(asml)/s1m; - } - } - else - { - return ei_sqrt(amed); - } - asml = std::min(abig, amed); - abig = std::max(abig, amed); - if(asml <= abig*relerr) - return abig; - else - return abig * ei_sqrt(Scalar(1) + ei_abs2(asml/abig)); -} - /** \returns an expression of the quotient of *this by its own norm. * * \only_for_vectors diff --git a/Eigen/src/Core/Functors.h b/Eigen/src/Core/Functors.h index 89badb353..a4c9604df 100644 --- a/Eigen/src/Core/Functors.h +++ b/Eigen/src/Core/Functors.h @@ -124,9 +124,6 @@ template<typename Scalar> struct ei_scalar_hypot_op EIGEN_EMPTY_STRUCT { // typedef typename NumTraits<Scalar>::Real result_type; EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const { -// typedef typename NumTraits<T>::Real RealScalar; -// RealScalar _x = ei_abs(x); -// RealScalar _y = ei_abs(y); Scalar p = std::max(_x, _y); Scalar q = std::min(_x, _y); Scalar qp = q/p; diff --git a/Eigen/src/Core/MapBase.h b/Eigen/src/Core/MapBase.h index 721f2d476..e643144ff 100644 --- a/Eigen/src/Core/MapBase.h +++ b/Eigen/src/Core/MapBase.h @@ -173,8 +173,14 @@ template<typename Derived> class MapBase using Base::operator=; using Base::operator*=; - using Base::operator+=; - using Base::operator-=; + + template<typename Lhs,typename Rhs> + Derived& operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other) + { return Base::operator+=(other); } + + template<typename Lhs,typename Rhs> + Derived& operator-=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other) + { return Base::operator-=(other); } template<typename OtherDerived> Derived& operator+=(const MatrixBase<OtherDerived>& other) diff --git a/Eigen/src/Core/Matrix.h b/Eigen/src/Core/Matrix.h index d5c508128..f21364c70 100644 --- a/Eigen/src/Core/Matrix.h +++ b/Eigen/src/Core/Matrix.h @@ -571,10 +571,16 @@ class Matrix template<typename OtherDerived> EIGEN_STRONG_INLINE Matrix& _set(const MatrixBase<OtherDerived>& other) { - _resize_to_match(other); - return Base::operator=(other); + _set_selector(other.derived(), typename ei_meta_if<(int(OtherDerived::Flags) & EvalBeforeAssigningBit), ei_meta_true, ei_meta_false>::ret()); + return *this; } + template<typename OtherDerived> + EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_true&) { _set_noalias(other.eval()); } + + template<typename OtherDerived> + EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const ei_meta_false&) { _set_noalias(other); } + /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which * is the case when creating a new matrix) so one can enforce lazy evaluation. * diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h index 3df518d1a..ac2b2532f 100644 --- a/Eigen/src/Core/MatrixBase.h +++ b/Eigen/src/Core/MatrixBase.h @@ -437,6 +437,7 @@ template<typename Derived> class MatrixBase RealScalar norm() const; RealScalar stableNorm() const; RealScalar blueNorm() const; + RealScalar hypotNorm() const; const PlainMatrixType normalized() const; void normalize(); diff --git a/Eigen/src/Core/NumTraits.h b/Eigen/src/Core/NumTraits.h index dec07a036..24afe54c5 100644 --- a/Eigen/src/Core/NumTraits.h +++ b/Eigen/src/Core/NumTraits.h @@ -70,9 +70,7 @@ template<> struct NumTraits<float> HasFloatingPoint = 1, ReadCost = 1, AddCost = 1, - MulCost = 1, - Base = 2, - Mantissa = 23 + MulCost = 1 }; }; @@ -85,9 +83,7 @@ template<> struct NumTraits<double> HasFloatingPoint = 1, ReadCost = 1, AddCost = 1, - MulCost = 1, - Base = 2, - Mantissa = 52 + MulCost = 1 }; }; diff --git a/Eigen/src/Core/Product.h b/Eigen/src/Core/Product.h index 402f597d2..b46440ec0 100644 --- a/Eigen/src/Core/Product.h +++ b/Eigen/src/Core/Product.h @@ -287,6 +287,18 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived()); } +/** replaces \c *this by \c *this * \a other. + * + * \returns a reference to \c *this + */ +template<typename Derived> +template<typename OtherDerived> +inline Derived & +MatrixBase<Derived>::operator*=(const MatrixBase<OtherDerived> &other) +{ + return derived() = derived() * other.derived(); +} + /*************************************************************************** * Normal product .coeff() implementation (with meta-unrolling) ***************************************************************************/ diff --git a/Eigen/src/Core/StableNorm.h b/Eigen/src/Core/StableNorm.h new file mode 100644 index 000000000..22809633d --- /dev/null +++ b/Eigen/src/Core/StableNorm.h @@ -0,0 +1,194 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_STABLENORM_H +#define EIGEN_STABLENORM_H + +template<typename ExpressionType, typename Scalar> +inline void ei_stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale) +{ + Scalar max = bl.cwise().abs().maxCoeff(); + if (max>scale) + { + ssq = ssq * ei_abs2(scale/max); + scale = max; + invScale = Scalar(1)/scale; + } + // TODO if the max is much much smaller than the current scale, + // then we can neglect this sub vector + ssq += (bl*invScale).squaredNorm(); +} + +/** \returns the \em l2 norm of \c *this avoiding underflow and overflow. + * This version use a blockwise two passes algorithm: + * 1 - find the absolute largest coefficient \c s + * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way + * + * For architecture/scalar types supporting vectorization, this version + * is faster than blueNorm(). Otherwise the blueNorm() is much faster. + * + * \sa norm(), blueNorm(), hypotNorm() + */ +template<typename Derived> +inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real +MatrixBase<Derived>::stableNorm() const +{ + const int blockSize = 4096; + RealScalar scale = 0; + RealScalar invScale; + RealScalar ssq = 0; // sum of square + enum { + Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? ForceAligned : AsRequested + }; + int n = size(); + int bi=0; + if ((int(Flags)&DirectAccessBit) && !(int(Flags)&AlignedBit)) + { + bi = ei_alignmentOffset(&const_cast_derived().coeffRef(0), n); + if (bi>0) + ei_stable_norm_kernel(start(bi), ssq, scale, invScale); + } + for (; bi<n; bi+=blockSize) + ei_stable_norm_kernel(VectorBlock<Derived,Dynamic,Alignment>(derived(),bi,std::min(blockSize, n - bi)), ssq, scale, invScale); + return scale * ei_sqrt(ssq); +} + +/** \returns the \em l2 norm of \c *this using the Blue's algorithm. + * A Portable Fortran Program to Find the Euclidean Norm of a Vector, + * ACM TOMS, Vol 4, Issue 1, 1978. + * + * For architecture/scalar types without vectorization, this version + * is much faster than stableNorm(). Otherwise the stableNorm() is faster. + * + * \sa norm(), stableNorm(), hypotNorm() + */ +template<typename Derived> +inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real +MatrixBase<Derived>::blueNorm() const +{ + static int nmax = -1; + static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr; + if(nmax <= 0) + { + int nbig, ibeta, it, iemin, iemax, iexp; + RealScalar abig, eps; + // This program calculates the machine-dependent constants + // bl, b2, slm, s2m, relerr overfl, nmax + // from the "basic" machine-dependent numbers + // nbig, ibeta, it, iemin, iemax, rbig. + // The following define the basic machine-dependent constants. + // For portability, the PORT subprograms "ilmaeh" and "rlmach" + // are used. For any specific computer, each of the assignment + // statements can be replaced + nbig = std::numeric_limits<int>::max(); // largest integer + ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers + it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa + iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent + iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent + rbig = std::numeric_limits<RealScalar>::max(); // largest floating-point number + + // Check the basic machine-dependent constants. + if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) + || (it<=4 && ibeta <= 3 ) || it<2) + { + ei_assert(false && "the algorithm cannot be guaranteed on this computer"); + } + iexp = -((1-iemin)/2); + b1 = std::pow(double(ibeta),iexp); // lower boundary of midrange + iexp = (iemax + 1 - it)/2; + b2 = std::pow(double(ibeta),iexp); // upper boundary of midrange + + iexp = (2-iemin)/2; + s1m = std::pow(double(ibeta),iexp); // scaling factor for lower range + iexp = - ((iemax+it)/2); + s2m = std::pow(double(ibeta),iexp); // scaling factor for upper range + + overfl = rbig*s2m; // overfow boundary for abig + eps = std::pow(double(ibeta), 1-it); + relerr = ei_sqrt(eps); // tolerance for neglecting asml + abig = 1.0/eps - 1.0; + if (RealScalar(nbig)>abig) nmax = abig; // largest safe n + else nmax = nbig; + } + int n = size(); + RealScalar ab2 = b2 / RealScalar(n); + RealScalar asml = RealScalar(0); + RealScalar amed = RealScalar(0); + RealScalar abig = RealScalar(0); + for(int j=0; j<n; ++j) + { + RealScalar ax = ei_abs(coeff(j)); + if(ax > ab2) abig += ei_abs2(ax*s2m); + else if(ax < b1) asml += ei_abs2(ax*s1m); + else amed += ei_abs2(ax); + } + if(abig > RealScalar(0)) + { + abig = ei_sqrt(abig); + if(abig > overfl) + { + ei_assert(false && "overflow"); + return rbig; + } + if(amed > RealScalar(0)) + { + abig = abig/s2m; + amed = ei_sqrt(amed); + } + else + return abig/s2m; + } + else if(asml > RealScalar(0)) + { + if (amed > RealScalar(0)) + { + abig = ei_sqrt(amed); + amed = ei_sqrt(asml) / s1m; + } + else + return ei_sqrt(asml)/s1m; + } + else + return ei_sqrt(amed); + asml = std::min(abig, amed); + abig = std::max(abig, amed); + if(asml <= abig*relerr) + return abig; + else + return abig * ei_sqrt(RealScalar(1) + ei_abs2(asml/abig)); +} + +/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow. + * This version use a concatenation of hypot() calls, and it is very slow. + * + * \sa norm(), stableNorm() + */ +template<typename Derived> +inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real +MatrixBase<Derived>::hypotNorm() const +{ + return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>()); +} + +#endif // EIGEN_STABLENORM_H |