1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FUNCTORS_H
#define EIGEN_FUNCTORS_H
// associative functors:
/** \internal
* \brief Template functor to compute the sum of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
*/
template<typename Scalar> struct ei_scalar_sum_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
{ return ei_padd(a,b); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const
{ return ei_predux(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sum_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = ei_packet_traits<Scalar>::size>1
};
};
/** \internal
* \brief Template functor to compute the product of two scalars
*
* \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
*/
template<typename Scalar> struct ei_scalar_product_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
{ return ei_pmul(a,b); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const
{ return ei_predux_mul(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_product_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = ei_packet_traits<Scalar>::size>1
};
};
/** \internal
* \brief Template functor to compute the min of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
*/
template<typename Scalar> struct ei_scalar_min_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
{ return ei_pmin(a,b); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const
{ return ei_predux_min(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_min_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = ei_packet_traits<Scalar>::size>1
};
};
/** \internal
* \brief Template functor to compute the max of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
*/
template<typename Scalar> struct ei_scalar_max_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
{ return ei_pmax(a,b); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const
{ return ei_predux_max(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_max_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = ei_packet_traits<Scalar>::size>1
};
};
/** \internal
* \brief Template functor to compute the hypot of two scalars
*
* \sa MatrixBase::stableNorm(), class Redux
*/
template<typename Scalar> struct ei_scalar_hypot_op EIGEN_EMPTY_STRUCT {
// typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
{
Scalar p = std::max(_x, _y);
Scalar q = std::min(_x, _y);
Scalar qp = q/p;
return p * ei_sqrt(Scalar(1) + qp*qp);
}
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_hypot_op<Scalar> > {
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
};
// other binary functors:
/** \internal
* \brief Template functor to compute the difference of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::operator-
*/
template<typename Scalar> struct ei_scalar_difference_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
{ return ei_psub(a,b); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_difference_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = ei_packet_traits<Scalar>::size>1
};
};
/** \internal
* \brief Template functor to compute the quotient of two scalars
*
* \sa class CwiseBinaryOp, Cwise::operator/()
*/
template<typename Scalar> struct ei_scalar_quotient_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const
{ return ei_pdiv(a,b); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient_op<Scalar> > {
enum {
Cost = 2 * NumTraits<Scalar>::MulCost,
PacketAccess = ei_packet_traits<Scalar>::size>1
#if (defined EIGEN_VECTORIZE_SSE)
&& NumTraits<Scalar>::HasFloatingPoint
#endif
};
};
// unary functors:
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::operator-
*/
template<typename Scalar> struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pnegate(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_opposite_op<Scalar> >
{ enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = int(ei_packet_traits<Scalar>::size)>1 };
};
/** \internal
* \brief Template functor to compute the absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs
*/
template<typename Scalar> struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT {
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs(a); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pabs(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_abs_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = int(ei_packet_traits<Scalar>::size)>1
};
};
/** \internal
* \brief Template functor to compute the squared absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs2
*/
template<typename Scalar> struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT {
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs2(a); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pmul(a,a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_abs2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; };
/** \internal
* \brief Template functor to compute the conjugate of a complex value
*
* \sa class CwiseUnaryOp, MatrixBase::conjugate()
*/
template<typename Scalar> struct ei_scalar_conjugate_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return ei_conj(a); }
template<typename PacketScalar>
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return a; }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_conjugate_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
PacketAccess = int(ei_packet_traits<Scalar>::size)>1
};
};
/** \internal
* \brief Template functor to cast a scalar to another type
*
* \sa class CwiseUnaryOp, MatrixBase::cast()
*/
template<typename Scalar, typename NewType>
struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT {
typedef NewType result_type;
EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return static_cast<NewType>(a); }
};
template<typename Scalar, typename NewType>
struct ei_functor_traits<ei_scalar_cast_op<Scalar,NewType> >
{ enum { Cost = ei_is_same_type<Scalar, NewType>::ret ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct ei_scalar_real_op EIGEN_EMPTY_STRUCT {
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_real(a); }
EIGEN_STRONG_INLINE result_type& operator() (Scalar& a) const { return ei_real_ref(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_real_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct ei_scalar_imag_op EIGEN_EMPTY_STRUCT {
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_imag(a); }
EIGEN_STRONG_INLINE result_type& operator() (Scalar& a) const { return ei_imag_ref(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to multiply a scalar by a fixed other one
*
* \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
*/
/* NOTE why doing the ei_pset1() in packetOp *is* an optimization ?
* indeed it seems better to declare m_other as a PacketScalar and do the ei_pset1() once
* in the constructor. However, in practice:
* - GCC does not like m_other as a PacketScalar and generate a load every time it needs it
* - on the other hand GCC is able to moves the ei_pset1() away the loop :)
* - simpler code ;)
* (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
*/
template<typename Scalar>
struct ei_scalar_multiple_op {
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
// FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE ei_scalar_multiple_op(const ei_scalar_multiple_op& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE ei_scalar_multiple_op(const Scalar& other) : m_other(other) { }
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pmul(a, ei_pset1(m_other)); }
const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_multiple_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
template<typename Scalar1, typename Scalar2>
struct ei_scalar_multiple2_op {
typedef typename ei_scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const ei_scalar_multiple2_op& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
const Scalar2 m_other;
};
template<typename Scalar1,typename Scalar2>
struct ei_functor_traits<ei_scalar_multiple2_op<Scalar1,Scalar2> >
{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
template<typename Scalar, bool HasFloatingPoint>
struct ei_scalar_quotient1_impl {
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
// FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const
{ return ei_pmul(a, ei_pset1(m_other)); }
const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,true> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; };
template<typename Scalar>
struct ei_scalar_quotient1_impl<Scalar,false> {
// FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,false> >
{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to divide a scalar by a fixed other one
*
* This functor is used to implement the quotient of a matrix by
* a scalar where the scalar type is not necessarily a floating point type.
*
* \sa class CwiseUnaryOp, MatrixBase::operator/
*/
template<typename Scalar>
struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint > {
EIGEN_STRONG_INLINE ei_scalar_quotient1_op(const Scalar& other)
: ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint >(other) {}
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient1_op<Scalar> >
: ei_functor_traits<ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::HasFloatingPoint> >
{};
// nullary functors
template<typename Scalar>
struct ei_scalar_constant_op {
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
EIGEN_STRONG_INLINE ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE ei_scalar_constant_op(const Scalar& other) : m_other(other) { }
EIGEN_STRONG_INLINE const Scalar operator() (int, int = 0) const { return m_other; }
EIGEN_STRONG_INLINE const PacketScalar packetOp() const { return ei_pset1(m_other); }
const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_constant_op<Scalar> >
{ enum { Cost = 1, PacketAccess = ei_packet_traits<Scalar>::size>1, IsRepeatable = true }; };
template<typename Scalar> struct ei_scalar_identity_op EIGEN_EMPTY_STRUCT {
EIGEN_STRONG_INLINE ei_scalar_identity_op(void) {}
EIGEN_STRONG_INLINE const Scalar operator() (int row, int col) const { return row==col ? Scalar(1) : Scalar(0); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_identity_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
// allow to add new functors and specializations of ei_functor_traits from outside Eigen.
// this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used...
#ifdef EIGEN_FUNCTORS_PLUGIN
#include EIGEN_FUNCTORS_PLUGIN
#endif
// all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta
// to indicate whether a functor allows linear access, just always answering 'yes' except for
// ei_scalar_identity_op.
template<typename Functor> struct ei_functor_has_linear_access { enum { ret = 1 }; };
template<typename Scalar> struct ei_functor_has_linear_access<ei_scalar_identity_op<Scalar> > { enum { ret = 0 }; };
// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
template<typename Functor> struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
template<typename Scalar> struct ei_functor_allows_mixing_real_and_complex<ei_scalar_product_op<Scalar> > { enum { ret = 1 }; };
#endif // EIGEN_FUNCTORS_H
|