aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2008-07-20 15:18:54 +0000
committerGravatar Gael Guennebaud <g.gael@free.fr>2008-07-20 15:18:54 +0000
commitce425d92f1c1d199c8428c46b4c4ea3be81b137b (patch)
tree582521e6e2f5bd871902e0a3f297acae38695936
parent269f683902231020a910fd4e2c1b74554183e2c8 (diff)
Various documentation improvements, in particualr in Cholesky and Geometry module.
Added doxygen groups for Matrix typedefs and the Geometry module
-rw-r--r--Eigen/Geometry11
-rw-r--r--Eigen/src/Cholesky/Cholesky.h12
-rw-r--r--Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h18
-rwxr-xr-xEigen/src/Core/InverseProduct.h4
-rw-r--r--Eigen/src/Core/Matrix.h17
-rw-r--r--Eigen/src/Core/Part.h8
-rw-r--r--Eigen/src/Core/Visitor.h3
-rw-r--r--Eigen/src/Core/util/Constants.h4
-rw-r--r--Eigen/src/Geometry/AngleAxis.h11
-rw-r--r--Eigen/src/Geometry/Quaternion.h59
-rw-r--r--Eigen/src/Geometry/Rotation.h20
-rw-r--r--Eigen/src/Geometry/Transform.h95
-rw-r--r--doc/Doxyfile.in4
-rw-r--r--doc/snippets/AngleAxis_mimic_euler.cpp2
14 files changed, 179 insertions, 89 deletions
diff --git a/Eigen/Geometry b/Eigen/Geometry
index 429dc2ac5..5e73ce992 100644
--- a/Eigen/Geometry
+++ b/Eigen/Geometry
@@ -5,7 +5,16 @@
namespace Eigen {
-/** \defgroup Geometry */
+/** \defgroup Geometry
+ * This module provides support for:
+ * - fixed-size homogeneous transformations
+ * - 2D and 3D rotations
+ * - \ref MatrixBase::cross() "cross product"
+ *
+ * \code
+ * #include <Eigen/Geometry>
+ * \endcode
+ */
#include "src/Geometry/Cross.h"
#include "src/Geometry/Quaternion.h"
diff --git a/Eigen/src/Cholesky/Cholesky.h b/Eigen/src/Cholesky/Cholesky.h
index c1f05d768..dd4fc6e38 100644
--- a/Eigen/src/Cholesky/Cholesky.h
+++ b/Eigen/src/Cholesky/Cholesky.h
@@ -42,7 +42,7 @@
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*
- * \sa class CholeskyWithoutSquareRoot
+ * \sa MatrixBase::cholesky(), class CholeskyWithoutSquareRoot
*/
template<typename MatrixType> class Cholesky
{
@@ -107,20 +107,22 @@ void Cholesky<MatrixType>::compute(const MatrixType& a)
}
}
-/** \returns the solution of A x = \a b using the current decomposition of A.
- * In other words, it returns \code A^-1 b \endcode computing
- * \code L^-* L^1 b \endcode from right to left.
+/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
+ * In other words, it returns \f$ A^{-1} b \f$ computing
+ * \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
+ * \param b the column vector \f$ b \f$, which can also be a matrix.
*
* Example: \include Cholesky_solve.cpp
* Output: \verbinclude Cholesky_solve.out
*
+ * \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve()
*/
template<typename MatrixType>
template<typename Derived>
typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const
{
const int size = m_matrix.rows();
- ei_assert(size==b.size());
+ ei_assert(size==b.rows());
return m_matrix.adjoint().template extract<Upper>().inverseProduct(matrixL().inverseProduct(b));
}
diff --git a/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h b/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
index 2d85f78db..2572b88a2 100644
--- a/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
+++ b/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
@@ -32,8 +32,8 @@
* \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
*
* This class performs a Cholesky decomposition without square root of a symmetric, positive definite
- * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal and D is a diagonal
- * matrix.
+ * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal
+ * and D is a diagonal matrix.
*
* Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
* stable computation.
@@ -41,7 +41,7 @@
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*
- * \sa class Cholesky
+ * \sa MatrixBase::choleskyNoSqrt(), class Cholesky
*/
template<typename MatrixType> class CholeskyWithoutSquareRoot
{
@@ -123,19 +123,23 @@ void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
* In other words, it returns \f$ A^{-1} b \f$ computing
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
- * \param vecB the vector \f$ b \f$ (or an array of vectors)
+ * \param b the column vector \f$ b \f$, which can also be a matrix.
+ *
+ * See Cholesky::solve() for a example.
+ *
+ * \sa MatrixBase::choleskyNoSqrt()
*/
template<typename MatrixType>
template<typename Derived>
-typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const MatrixBase<Derived> &vecB) const
+typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const MatrixBase<Derived> &b) const
{
const int size = m_matrix.rows();
- ei_assert(size==vecB.size());
+ ei_assert(size==b.rows());
return m_matrix.adjoint().template extract<UnitUpper>()
.inverseProduct(
(matrixL()
- .inverseProduct(vecB))
+ .inverseProduct(b))
.cwise()/m_matrix.diagonal()
);
}
diff --git a/Eigen/src/Core/InverseProduct.h b/Eigen/src/Core/InverseProduct.h
index 57dbf7509..0ee54a3fb 100755
--- a/Eigen/src/Core/InverseProduct.h
+++ b/Eigen/src/Core/InverseProduct.h
@@ -72,9 +72,9 @@ void MatrixBase<Derived>::inverseProductInPlace(MatrixBase<OtherDerived>& other)
}
}
-/** \returns the product of the inverse of \c *this with \a other.
+/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
*
- * This function computes the inverse-matrix matrix product inverse(\c*this) * \a other
+ * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other
* It works as a forward (resp. backward) substitution if \c *this is an upper (resp. lower)
* triangular matrix.
*
diff --git a/Eigen/src/Core/Matrix.h b/Eigen/src/Core/Matrix.h
index 92988b725..85a984920 100644
--- a/Eigen/src/Core/Matrix.h
+++ b/Eigen/src/Core/Matrix.h
@@ -71,6 +71,8 @@
* \li \c VectorXf is a typedef for \c Matrix<float,Dynamic,1>
* \li \c RowVector3i is a typedef for \c Matrix<int,1,3>
*
+ * See \ref matrixtypedefs for an explicit list of all matrix typedefs.
+ *
* Of course these typedefs do not exhaust all the possibilities offered by the Matrix class
* template, they only address some of the most common cases. For instance, if you want a
* fixed-size matrix with 3 rows and 5 columns, there is no typedef for that, so you should use
@@ -355,9 +357,18 @@ class Matrix : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _MaxRows, _MaxCol
}
};
-#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
-typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
-typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
+/** \defgroup matrixtypedefs Global matrix typedefs
+ * Eigen defines several typedef shortcuts for most common matrix types.
+ * Here is the explicit list.
+ * \sa class Matrix
+ */
+
+#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
+/** \ingroup matrixtypedefs */ \
+typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
+/** \ingroup matrixtypedefs */ \
+typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
+/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
diff --git a/Eigen/src/Core/Part.h b/Eigen/src/Core/Part.h
index eb8dcbba7..a0553923a 100644
--- a/Eigen/src/Core/Part.h
+++ b/Eigen/src/Core/Part.h
@@ -106,9 +106,9 @@ struct ei_part_assignment_impl
if(Mode == SelfAdjoint)
{
if(row == col)
- dst.coeffRef(row, col) = ei_real(src.coeff(row, col));
+ dst.coeffRef(row, col) = ei_real(src.coeff(row, col));
else if(row < col)
- dst.coeffRef(col, row) = ei_conj(dst.coeffRef(row, col) = src.coeff(row, col));
+ dst.coeffRef(col, row) = ei_conj(dst.coeffRef(row, col) = src.coeff(row, col));
}
else
{
@@ -116,7 +116,7 @@ struct ei_part_assignment_impl
|| (Mode == Lower && row >= col)
|| (Mode == StrictlyUpper && row < col)
|| (Mode == StrictlyLower && row > col))
- dst.coeffRef(row, col) = src.coeff(row, col);
+ dst.coeffRef(row, col) = src.coeff(row, col);
}
}
};
@@ -262,6 +262,8 @@ inline void Part<MatrixType, Mode>::setRandom()
* The \a Mode parameter can have the following values: \c Upper, \c StrictlyUpper, \c Lower,
* \c StrictlyLower, \c SelfAdjoint.
*
+ * \addexample PartExample \label How to write to a triangular part of a matrix
+ *
* Example: \include MatrixBase_part.cpp
* Output: \verbinclude MatrixBase_part.out
*
diff --git a/Eigen/src/Core/Visitor.h b/Eigen/src/Core/Visitor.h
index 18e90ca62..041aa9445 100644
--- a/Eigen/src/Core/Visitor.h
+++ b/Eigen/src/Core/Visitor.h
@@ -76,6 +76,9 @@ struct ei_visitor_impl<Visitor, Derived, Dynamic>
* };
* \endcode
*
+ * \note compared to one or two \em for \em loops, visitors offer automatic
+ * unrolling for small fixed size matrix.
+ *
* \sa minCoeff(int*,int*), maxCoeff(int*,int*), MatrixBase::redux()
*/
template<typename Derived>
diff --git a/Eigen/src/Core/util/Constants.h b/Eigen/src/Core/util/Constants.h
index 7e2d37dff..24c653e2e 100644
--- a/Eigen/src/Core/util/Constants.h
+++ b/Eigen/src/Core/util/Constants.h
@@ -28,9 +28,7 @@
const int Dynamic = 10000;
-/** \defgroup flags */
-
-/** \name flags
+/** \defgroup flags
*
* These are the possible bits which can be OR'ed to constitute the flags of a matrix or
* expression.
diff --git a/Eigen/src/Geometry/AngleAxis.h b/Eigen/src/Geometry/AngleAxis.h
index 647e07513..ca53140fb 100644
--- a/Eigen/src/Geometry/AngleAxis.h
+++ b/Eigen/src/Geometry/AngleAxis.h
@@ -64,10 +64,15 @@ protected:
public:
+ /** Default constructor without initialization. */
AngleAxis() {}
+ /** Constructs and initialize the angle-axis rotation from an \a angle in radian
+ * and an \a axis which must be normalized. */
template<typename Derived>
inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
+ /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
inline AngleAxis(const QuaternionType& q) { *this = q; }
+ /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived>
inline AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
@@ -77,6 +82,8 @@ public:
const Vector3& axis() const { return m_axis; }
Vector3& axis() { return m_axis; }
+ /** Automatic conversion to a 3x3 rotation matrix.
+ * \sa toRotationMatrix() */
operator Matrix3 () const { return toRotationMatrix(); }
inline QuaternionType operator* (const AngleAxis& other) const
@@ -105,7 +112,11 @@ public:
Matrix3 toRotationMatrix(void) const;
};
+/** \ingroup Geometry
+ * single precision angle-axis type */
typedef AngleAxis<float> AngleAxisf;
+/** \ingroup Geometry
+ * double precision angle-axis type */
typedef AngleAxis<double> AngleAxisd;
/** Set \c *this from a quaternion.
diff --git a/Eigen/src/Geometry/Quaternion.h b/Eigen/src/Geometry/Quaternion.h
index 1d31e2f96..ab6994b4b 100644
--- a/Eigen/src/Geometry/Quaternion.h
+++ b/Eigen/src/Geometry/Quaternion.h
@@ -38,13 +38,12 @@ struct ei_quaternion_assign_impl;
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
- * This class represents a quaternion that is a convenient representation of
- * orientations and rotations of objects in three dimensions. Compared to other
- * representations like Euler angles or 3x3 matrices, quatertions offer the
- * following advantages:
- * \li \c compact storage (4 scalars)
- * \li \c efficient to compose (28 flops),
- * \li \c stable spherical interpolation
+ * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
+ * orientations and rotations of objects in three dimensions. Compared to other representations
+ * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
+ * \li \b compact storage (4 scalars)
+ * \li \b efficient to compose (28 flops),
+ * \li \b stable spherical interpolation
*
* The following two typedefs are provided for convenience:
* \li \c Quaternionf for \c float
@@ -63,18 +62,29 @@ public:
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
+ /** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
+ /** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
+ /** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
+ /** \returns the \c x coefficient */
inline Scalar x() const { return m_coeffs.coeff(0); }
+ /** \returns the \c y coefficient */
inline Scalar y() const { return m_coeffs.coeff(1); }
+ /** \returns the \c z coefficient */
inline Scalar z() const { return m_coeffs.coeff(2); }
+ /** \returns the \c w coefficient */
inline Scalar w() const { return m_coeffs.coeff(3); }
+ /** \returns a reference to the \c x coefficient */
inline Scalar& x() { return m_coeffs.coeffRef(0); }
+ /** \returns a reference to the \c y coefficient */
inline Scalar& y() { return m_coeffs.coeffRef(1); }
+ /** \returns a reference to the \c z coefficient */
inline Scalar& z() { return m_coeffs.coeffRef(2); }
+ /** \returns a reference to the \c w coefficient */
inline Scalar& w() { return m_coeffs.coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
@@ -83,25 +93,33 @@ public:
/** \returns a vector expression of the imaginary part (x,y,z) */
inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
- /** \returns a read-only vector expression of the coefficients */
+ /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
inline const Coefficients& coeffs() const { return m_coeffs; }
- /** \returns a vector expression of the coefficients */
+ /** \returns a vector expression of the coefficients (x,y,z,w) */
inline Coefficients& coeffs() { return m_coeffs; }
+ /** Default constructor and initializing an identity quaternion. */
+ inline Quaternion()
+ { m_coeffs << 0, 0, 0, 1; }
+
+ /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
+ * its four coefficients \a w, \a x, \a y and \a z.
+ */
// FIXME what is the prefered order: w x,y,z or x,y,z,w ?
- inline Quaternion(Scalar w = 1.0, Scalar x = 0.0, Scalar y = 0.0, Scalar z = 0.0)
- {
- m_coeffs.coeffRef(0) = x;
- m_coeffs.coeffRef(1) = y;
- m_coeffs.coeffRef(2) = z;
- m_coeffs.coeffRef(3) = w;
- }
+ inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
+ { m_coeffs << x, y, z, w; }
/** Copy constructor */
inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
+ /** Constructs and initializes a quaternion from the angle-axis \a aa */
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
+ /** Constructs and initializes a quaternion from either:
+ * - a rotation matrix expression,
+ * - a 4D vector expression representing quaternion coefficients.
+ * \sa operator=(MatrixBase<Derived>)
+ */
template<typename Derived>
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
@@ -110,6 +128,7 @@ public:
template<typename Derived>
Quaternion& operator=(const MatrixBase<Derived>& m);
+ /** Automatic conversion to a rotation matrix. */
operator Matrix3 () const { return toRotationMatrix(); }
/** \returns a quaternion representing an identity rotation
@@ -149,7 +168,11 @@ public:
};
+/** \ingroup Geometry
+ * single precision quaternion type */
typedef Quaternion<float> Quaternionf;
+/** \ingroup Geometry
+ * double precision quaternion type */
typedef Quaternion<double> Quaterniond;
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
@@ -165,6 +188,7 @@ inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other
);
}
+/** \sa operator*(Quaternion) */
template <typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
{
@@ -200,8 +224,7 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other
return *this;
}
-/** Set \c *this from an angle-axis \a aa
- * and returns a reference to \c *this
+/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
diff --git a/Eigen/src/Geometry/Rotation.h b/Eigen/src/Geometry/Rotation.h
index e0855b739..a98ed061a 100644
--- a/Eigen/src/Geometry/Rotation.h
+++ b/Eigen/src/Geometry/Rotation.h
@@ -28,7 +28,7 @@
// this file aims to contains the various representations of rotation/orientation
// in 2D and 3D space excepted Matrix and Quaternion.
-/** \geometry_module
+/** \internal
*
* \class ToRotationMatrix
*
@@ -103,7 +103,7 @@ struct ToRotationMatrix<Scalar, Dim, MatrixBase<OtherDerived> >
}
};
-/** \geometry_module
+/** \geometry_module \ingroup Geometry
*
* \class Rotation2D
*
@@ -111,10 +111,10 @@ struct ToRotationMatrix<Scalar, Dim, MatrixBase<OtherDerived> >
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
- * This class is equivalent to a single scalar representing the rotation angle
- * in radian with some additional features such as the conversion from/to
- * rotation matrix. Moreover this class aims to provide a similar interface
- * to Quaternion in order to facilitate the writing of generic algorithm
+ * This class is equivalent to a single scalar representing a counter clock wise rotation
+ * as a single angle in radian. It provides some additional features such as the automatic
+ * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
+ * interface to Quaternion in order to facilitate the writing of generic algorithm
* dealing with rotations.
*
* \sa class Quaternion, class Transform
@@ -134,16 +134,22 @@ protected:
public:
+ /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
inline Rotation2D(Scalar a) : m_angle(a) {}
inline operator Scalar& () { return m_angle; }
inline operator Scalar () const { return m_angle; }
+ /** Automatic convertion to a 2D rotation matrix.
+ * \sa toRotationMatrix()
+ */
+ inline operator Matrix2() const { return toRotationMatrix(); }
+
template<typename Derived>
Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix2 toRotationMatrix(void) const;
/** \returns the spherical interpolation between \c *this and \a other using
- * parameter \a t. It is equivalent to a linear interpolation.
+ * parameter \a t. It is in fact equivalent to a linear interpolation.
*/
inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
{ return m_angle * (1-t) + t * other; }
diff --git a/Eigen/src/Geometry/Transform.h b/Eigen/src/Geometry/Transform.h
index 7669838de..73e268e13 100644
--- a/Eigen/src/Geometry/Transform.h
+++ b/Eigen/src/Geometry/Transform.h
@@ -50,20 +50,29 @@ struct ei_transform_product_impl;
* Conversion methods from/to Qt's QMatrix are available if the preprocessor token
* EIGEN_QT_SUPPORT is defined.
*
+ * \sa class Matrix, class Quaternion
*/
template<typename _Scalar, int _Dim>
class Transform
{
public:
- enum { Dim = _Dim, HDim = _Dim+1 };
+ enum {
+ Dim = _Dim, ///< space dimension in which the transformation holds
+ HDim = _Dim+1 ///< size of a respective homogeneous vector
+ };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
+ /** type of the matrix used to represent the transformation */
typedef Matrix<Scalar,HDim,HDim> MatrixType;
+ /** type of the matrix used to represent the affine part of the transformation */
typedef Matrix<Scalar,Dim,Dim> AffineMatrixType;
- typedef Block<MatrixType,Dim,Dim> AffineMatrixRef;
+ /** type of read/write reference to the affine part of the transformation */
+ typedef Block<MatrixType,Dim,Dim> AffinePart;
+ /** type of a vector */
typedef Matrix<Scalar,Dim,1> VectorType;
- typedef Block<MatrixType,Dim,1> VectorRef;
+ /** type of a read/write reference to the translation part of the rotation */
+ typedef Block<MatrixType,Dim,1> TranslationPart;
protected:
@@ -80,10 +89,12 @@ public:
inline Transform& operator=(const Transform& other)
{ m_matrix = other.m_matrix; return *this; }
+ /** Constructs and initializes a transformation from a (Dim+1)^2 matrix. */
template<typename OtherDerived>
inline explicit Transform(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; }
+ /** Set \c *this from a (Dim+1)^2 matrix. */
template<typename OtherDerived>
inline Transform& operator=(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; return *this; }
@@ -100,14 +111,14 @@ public:
inline MatrixType& matrix() { return m_matrix; }
/** \returns a read-only expression of the affine (linear) part of the transformation */
- inline const AffineMatrixRef affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
+ inline const AffinePart affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a writable expression of the affine (linear) part of the transformation */
- inline AffineMatrixRef affine() { return m_matrix.template block<Dim,Dim>(0,0); }
+ inline AffinePart affine() { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a read-only expression of the translation vector of the transformation */
- inline const VectorRef translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
+ inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
/** \returns a writable expression of the translation vector of the transformation */
- inline VectorRef translation() { return m_matrix.template block<Dim,1>(0,Dim); }
+ inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
template<typename OtherDerived>
const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
@@ -118,6 +129,7 @@ public:
operator * (const Transform& other) const
{ return m_matrix * other.matrix(); }
+ /** \sa MatrixBase::setIdentity() */
void setIdentity() { m_matrix.setIdentity(); }
template<typename OtherDerived>
@@ -138,10 +150,7 @@ public:
template<typename RotationType>
Transform& prerotate(const RotationType& rotation);
- template<typename OtherDerived>
Transform& shear(Scalar sx, Scalar sy);
-
- template<typename OtherDerived>
Transform& preshear(Scalar sx, Scalar sy);
AffineMatrixType extractRotation() const;
@@ -151,6 +160,7 @@ public:
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
+ /** \sa MatrixBase::inverse() */
const Inverse<MatrixType, false> inverse() const
{ return m_matrix.inverse(); }
@@ -158,8 +168,19 @@ protected:
};
+/** \ingroup Geometry */
+typedef Transform<float,2> Transform2f;
+/** \ingroup Geometry */
+typedef Transform<float,3> Transform3f;
+/** \ingroup Geometry */
+typedef Transform<double,2> Transform2d;
+/** \ingroup Geometry */
+typedef Transform<double,3> Transform3d;
+
#ifdef EIGEN_QT_SUPPORT
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>::Transform(const QMatrix& other)
@@ -168,6 +189,8 @@ Transform<Scalar,Dim>::Transform(const QMatrix& other)
}
/** Set \c *this from a QMatrix assuming the dimension is 2.
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
@@ -180,21 +203,25 @@ Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
}
/** \returns a QMatrix from \c *this assuming the dimension is 2.
+ *
+ * This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
{
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
- return QMatrix( other.coeffRef(0,0), other.coeffRef(1,0),
- other.coeffRef(0,1), other.coeffRef(1,1),
- other.coeffRef(0,2), other.coeffRef(1,2),
+ return QMatrix(other.coeffRef(0,0), other.coeffRef(1,0),
+ other.coeffRef(0,1), other.coeffRef(1,1),
+ other.coeffRef(0,2), other.coeffRef(1,2));
}
#endif
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other
*
- * The right hand side \a other might be a vector of size Dim, an homogeneous vector of size Dim+1
- * or a transformation matrix of size Dim+1 x Dim+1.
+ * The right hand side \a other might be either:
+ * \li a vector of size Dim,
+ * \li an homogeneous vector of size Dim+1,
+ * \li a transformation matrix of size Dim+1 x Dim+1.
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
@@ -213,8 +240,7 @@ template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
{
- EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
- && int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,Dim);
affine() = (affine() * other.asDiagonal()).lazy();
return *this;
}
@@ -228,8 +254,7 @@ template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
{
- EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
- && int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,Dim);
m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
return *this;
}
@@ -243,8 +268,7 @@ template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
{
- EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
- && int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,Dim);
translation() += affine() * other;
return *this;
}
@@ -258,8 +282,7 @@ template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
{
- EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
- && int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,Dim);
translation() += other;
return *this;
}
@@ -273,8 +296,8 @@ Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
* Natively supported types includes:
* - any scalar (2D),
* - a Dim x Dim matrix expression,
- * - Quaternion (3D),
- * - AngleAxis (3D)
+ * - a Quaternion (3D),
+ * - a AngleAxis (3D)
*
* This mechanism is easily extendable to support user types such as Euler angles,
* or a pair of Quaternion for 4D rotations.
@@ -293,9 +316,9 @@ Transform<Scalar,Dim>::rotate(const RotationType& rotation)
/** Applies on the left the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
- * See rotate(RotationType) for further details.
+ * See rotate() for further details.
*
- * \sa rotate(RotationType), rotate(Scalar)
+ * \sa rotate()
*/
template<typename Scalar, int Dim>
template<typename RotationType>
@@ -303,7 +326,7 @@ Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
{
m_matrix.template block<Dim,HDim>(0,0) = ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation)
- * m_matrix.template block<Dim,HDim>(0,0);
+ * m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
@@ -313,12 +336,10 @@ Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
* \sa preshear()
*/
template<typename Scalar, int Dim>
-template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
{
- EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
- && int(OtherDerived::SizeAtCompileTime)==int(Dim) && int(Dim)==2, you_did_a_programming_error);
+ EIGEN_STATIC_ASSERT(int(Dim)==2, you_did_a_programming_error);
VectorType tmp = affine().col(0)*sy + affine().col(1);
affine() << affine().col(0) + affine().col(1)*sx, tmp;
return *this;
@@ -330,18 +351,16 @@ Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
* \sa shear()
*/
template<typename Scalar, int Dim>
-template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
{
- EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
- && int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
+ EIGEN_STATIC_ASSERT(int(Dim)==2, you_did_a_programming_error);
m_matrix.template block<Dim,HDim>(0,0) = AffineMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/** \returns the rotation part of the transformation using a QR decomposition.
- * \sa extractRotationNoShear()
+ * \sa extractRotationNoShear(), class QR
*/
template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::AffineMatrixType
@@ -408,15 +427,15 @@ struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
{
typedef typename Other::Scalar Scalar;
typedef Transform<Scalar,Dim> TransformType;
- typedef typename TransformType::AffineMatrixRef MatrixType;
+ typedef typename TransformType::AffinePart MatrixType;
typedef const CwiseUnaryOp<
ei_scalar_multiple_op<Scalar>,
NestByValue<CwiseBinaryOp<
ei_scalar_sum_op<Scalar>,
NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >,
- NestByValue<typename TransformType::VectorRef> > >
+ NestByValue<typename TransformType::TranslationPart> > >
> ResultType;
- // FIXME shall we offer an optimized version when the last row is known to be 0,0...,0,1 ?
+ // FIXME should we offer an optimized version when the last row is known to be 0,0...,0,1 ?
static ResultType run(const TransformType& tr, const Other& other)
{ return ((tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
diff --git a/doc/Doxyfile.in b/doc/Doxyfile.in
index 4c5c71fd7..eed3fe600 100644
--- a/doc/Doxyfile.in
+++ b/doc/Doxyfile.in
@@ -1191,7 +1191,9 @@ PREDEFINED = EIGEN_EMPTY_STRUCT \
# The macro definition that is found in the sources will be used.
# Use the PREDEFINED tag if you want to use a different macro definition.
-EXPAND_AS_DEFINED = EIGEN_MAKE_SCALAR_OPS
+EXPAND_AS_DEFINED = EIGEN_MAKE_SCALAR_OPS \
+ EIGEN_MAKE_TYPEDEFS \
+ EIGEN_MAKE_TYPEDEFS_ALL_SIZES
# If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then
# doxygen's preprocessor will remove all function-like macros that are alone
diff --git a/doc/snippets/AngleAxis_mimic_euler.cpp b/doc/snippets/AngleAxis_mimic_euler.cpp
index be6b8adbe..46ec41aa5 100644
--- a/doc/snippets/AngleAxis_mimic_euler.cpp
+++ b/doc/snippets/AngleAxis_mimic_euler.cpp
@@ -1,4 +1,4 @@
Matrix3f m = AngleAxisf(0.25*M_PI, Vector3f::UnitX())
* AngleAxisf(0.5*M_PI, Vector3f::UnitY())
* AngleAxisf(0.33*M_PI, Vector3f::UnitZ());
-cout << m << endl;
+cout << m << endl << "is unitary: " << m.isUnitary() << endl;