aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-09-22 20:58:29 -0400
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-09-22 20:58:29 -0400
commitab5cc8284aedae58885902f3764d19a8ff05f758 (patch)
treec4af7c4c5ba3801cb789c76ff875d8ad9934f9e9
parentc1c780a94f148c618a74cfcccf40037442ae2d7c (diff)
convert LU::solve() to the new API
-rw-r--r--Eigen/src/Core/ReturnByValue.h5
-rw-r--r--Eigen/src/LU/LU.h189
-rw-r--r--doc/Doxyfile.in5
-rw-r--r--doc/snippets/LU_solve.cpp9
-rw-r--r--test/lu.cpp10
5 files changed, 122 insertions, 96 deletions
diff --git a/Eigen/src/Core/ReturnByValue.h b/Eigen/src/Core/ReturnByValue.h
index 4a5d5c105..afe9ecbbd 100644
--- a/Eigen/src/Core/ReturnByValue.h
+++ b/Eigen/src/Core/ReturnByValue.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@@ -37,6 +38,10 @@ struct ei_traits<ReturnByValue<Derived> >
};
};
+/* The ReturnByValue object doesn't even have a coeff() method.
+ * So the only way that nesting it in an expression can work, is by evaluating it into a plain matrix.
+ * So ei_nested always gives the plain return matrix type.
+ */
template<typename Derived,int n,typename PlainMatrixType>
struct ei_nested<ReturnByValue<Derived>, n, PlainMatrixType>
{
diff --git a/Eigen/src/LU/LU.h b/Eigen/src/LU/LU.h
index e848b5454..0475b5be3 100644
--- a/Eigen/src/LU/LU.h
+++ b/Eigen/src/LU/LU.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@@ -25,6 +25,90 @@
#ifndef EIGEN_LU_H
#define EIGEN_LU_H
+template<typename MatrixType, typename Rhs> struct ei_lu_solve_impl;
+
+template<typename MatrixType,typename Rhs>
+struct ei_traits<ei_lu_solve_impl<MatrixType,Rhs> >
+{
+ typedef Matrix<typename Rhs::Scalar,
+ MatrixType::ColsAtCompileTime,
+ Rhs::ColsAtCompileTime,
+ Rhs::PlainMatrixType::Options,
+ MatrixType::MaxColsAtCompileTime,
+ Rhs::MaxColsAtCompileTime> ReturnMatrixType;
+};
+
+template<typename MatrixType, typename Rhs>
+struct ei_lu_solve_impl : public ReturnByValue<ei_lu_solve_impl<MatrixType, Rhs> >
+{
+ typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested;
+ typedef LU<MatrixType> LUType;
+
+ ei_lu_solve_impl(const LUType& lu, const Rhs& rhs)
+ : m_lu(lu), m_rhs(rhs)
+ {}
+
+ inline int rows() const { return m_lu.matrixLU().cols(); }
+ inline int cols() const { return m_rhs.cols(); }
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dst.resize(m_lu.matrixLU().cols(), m_rhs.cols());
+ if(m_lu.rank()==0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
+ * So we proceed as follows:
+ * Step 1: compute c = P * rhs.
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
+ * Step 3: replace c by the solution x to Ux = c. May or may not exist.
+ * Step 4: result = Q * c;
+ */
+
+ const int rows = m_lu.matrixLU().rows(),
+ cols = m_lu.matrixLU().cols(),
+ rank = m_lu.rank();
+ ei_assert(m_rhs.rows() == rows);
+ const int smalldim = std::min(rows, cols);
+
+ typename Rhs::PlainMatrixType c(m_rhs.rows(), m_rhs.cols());
+
+ // Step 1
+ for(int i = 0; i < rows; ++i)
+ c.row(m_lu.permutationP().coeff(i)) = m_rhs.row(i);
+
+ // Step 2
+ m_lu.matrixLU()
+ .corner(Eigen::TopLeft,smalldim,smalldim)
+ .template triangularView<UnitLowerTriangular>()
+ .solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols()));
+ if(rows>cols)
+ {
+ c.corner(Eigen::BottomLeft, rows-cols, c.cols())
+ -= m_lu.matrixLU().corner(Eigen::BottomLeft, rows-cols, cols)
+ * c.corner(Eigen::TopLeft, cols, c.cols());
+ }
+
+ // Step 3
+ m_lu.matrixLU()
+ .corner(TopLeft, rank, rank)
+ .template triangularView<UpperTriangular>()
+ .solveInPlace(c.corner(TopLeft, rank, c.cols()));
+
+ // Step 4
+ for(int i = 0; i < rank; ++i)
+ dst.row(m_lu.permutationQ().coeff(i)) = c.row(i);
+ for(int i = rank; i < m_lu.matrixLU().cols(); ++i)
+ dst.row(m_lu.permutationQ().coeff(i)).setZero();
+ }
+
+ const LUType& m_lu;
+ const typename Rhs::Nested m_rhs;
+};
+
/** \ingroup LU_Module
*
* \class LU
@@ -83,8 +167,8 @@ template<typename MatrixType> class LU
> KernelResultType;
typedef Matrix<typename MatrixType::Scalar,
- MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number
- // of rows of the original matrix
+ MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose
+ // dimension is the number of rows of the original matrix
Dynamic, // we don't know at compile time the dimension of the image (the rank)
MatrixType::Options,
MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
@@ -114,7 +198,7 @@ template<typename MatrixType> class LU
* \returns a reference to *this
*/
LU& compute(const MatrixType& matrix);
-
+
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
* case, special care is needed, see the documentation of class LU).
@@ -215,29 +299,35 @@ template<typename MatrixType> class LU
*/
const ImageResultType image() const;
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the LU decomposition, if any exists.
+ /** This method returns a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the LU decomposition.
+ *
+ * If no solution exists, then the result is undefined. If only an approximate solution exists,
+ * then the result is only such an approximate solution.
*
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
* the only requirement in order for the equation to make sense is that
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
- * \param result a pointer to the vector or matrix in which to store the solution, if any exists.
- * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
- * If no solution exists, *result is left with undefined coefficients.
- *
- * \returns true if any solution exists, false if no solution exists.
*
- * \note If there exist more than one solution, this method will arbitrarily choose one.
- * If you need a complete analysis of the space of solutions, take the one solution obtained
- * by this method and add to it elements of the kernel, as determined by kernel().
+ * \returns a solution, if any exists. See notes below.
*
* Example: \include LU_solve.cpp
* Output: \verbinclude LU_solve.out
*
+ * \note \note_about_inexistant_solutions
+ *
+ * \note \note_about_arbitrary_choice_of_solution
+ * \note_about_using_kernel_to_study_multiple_solutions
+ *
* \sa TriangularView::solve(), kernel(), computeKernel(), inverse(), computeInverse()
*/
- template<typename OtherDerived, typename ResultType>
- bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
+ template<typename Rhs>
+ inline const ei_lu_solve_impl<MatrixType, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
+ return ei_lu_solve_impl<MatrixType, Rhs>(*this, b.derived());
+ }
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
@@ -326,7 +416,7 @@ template<typename MatrixType> class LU
{
ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
- solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result);
+ *result = solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()));
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
@@ -526,71 +616,6 @@ LU<MatrixType>::image() const
return result;
}
-template<typename MatrixType>
-template<typename OtherDerived, typename ResultType>
-bool LU<MatrixType>::solve(
- const MatrixBase<OtherDerived>& b,
- ResultType *result
-) const
-{
- ei_assert(m_originalMatrix != 0 && "LU is not initialized.");
- result->resize(m_lu.cols(), b.cols());
- if(m_rank==0)
- {
- if(b.squaredNorm() == RealScalar(0))
- {
- result->setZero();
- return true;
- }
- else return false;
- }
-
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
- * So we proceed as follows:
- * Step 1: compute c = Pb.
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
- * Step 3: replace c by the solution x to Ux = c. Check if a solution really exists.
- * Step 4: result = Qc;
- */
-
- const int rows = m_lu.rows(), cols = m_lu.cols();
- ei_assert(b.rows() == rows);
- const int smalldim = std::min(rows, cols);
-
- typename OtherDerived::PlainMatrixType c(b.rows(), b.cols());
-
- // Step 1
- for(int i = 0; i < rows; ++i) c.row(m_p.coeff(i)) = b.row(i);
-
- // Step 2
- m_lu.corner(Eigen::TopLeft,smalldim,smalldim)
- .template triangularView<UnitLowerTriangular>()
- .solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols()));
- if(rows>cols)
- {
- c.corner(Eigen::BottomLeft, rows-cols, c.cols())
- -= m_lu.corner(Eigen::BottomLeft, rows-cols, cols) * c.corner(Eigen::TopLeft, cols, c.cols());
- }
-
- // Step 3
- if(!isSurjective())
- {
- // is c is in the image of U ?
- RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff();
- RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff();
- if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
- return false;
- }
- m_lu.corner(TopLeft, m_rank, m_rank)
- .template triangularView<UpperTriangular>()
- .solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
-
- // Step 4
- for(int i = 0; i < m_rank; ++i) result->row(m_q.coeff(i)) = c.row(i);
- for(int i = m_rank; i < m_lu.cols(); ++i) result->row(m_q.coeff(i)).setZero();
- return true;
-}
-
/** \lu_module
*
* \return the LU decomposition of \c *this.
diff --git a/doc/Doxyfile.in b/doc/Doxyfile.in
index 5b055ed11..b62ba3238 100644
--- a/doc/Doxyfile.in
+++ b/doc/Doxyfile.in
@@ -215,7 +215,10 @@ ALIASES = "only_for_vectors=This is only for vectors (either row-
"eigenvalues_module=This is defined in the %Eigenvalues module. \code #include <Eigen/Eigenvalues> \endcode" \
"label=\bug" \
"redstar=<a href='#warningarraymodule' style='color:red;text-decoration: none;'>*</a>" \
- "nonstableyet=\warning This is not considered to be part of the stable public API yet. Changes may happen in future releases. See \ref Experimental \"Experimental parts of Eigen\""
+ "nonstableyet=\warning This is not considered to be part of the stable public API yet. Changes may happen in future releases. See \ref Experimental \"Experimental parts of Eigen\" \
+ "note_about_arbitrary_choice_of_solution=If there exist more than one solution, this method will arbitrarily choose one." \
+ "note_about_using_kernel_to_study_multiple_solutions=If you need a complete analysis of the space of solutions, take the one solution obtained by this method and add to it elements of the kernel, as determined by kernel()." \
+ "note_about_inexistant_solutions=If only an approximate solution exists, then the result is only such an approximate solution. The case where no solution exists isn't treated separately, as that would require one to use an arbitrary threshold. If you want to check whether a solution exists, just call this function to get a solution and then compute the margin of error, or use MatrixBase::isApprox() directly, for instance like this: \code bool = a_solution_exists = (A*result).isApprox(b, precision); \endcode As long as the input matrices have finite numeric coefficients (no \c inf or \c nan values), the result will also have finite numeric coefficients, there is no risk of getting \nan values if no solution exists.""
# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C
# sources only. Doxygen will then generate output that is more tailored for C.
diff --git a/doc/snippets/LU_solve.cpp b/doc/snippets/LU_solve.cpp
index 7323338c3..301074305 100644
--- a/doc/snippets/LU_solve.cpp
+++ b/doc/snippets/LU_solve.cpp
@@ -1,13 +1,10 @@
-typedef Matrix<float,2,3> Matrix2x3;
-typedef Matrix<float,3,2> Matrix3x2;
-Matrix2x3 m = Matrix2x3::Random();
+Matrix<float,2,3> m = Matrix<float,2,3>::Random();
Matrix2f y = Matrix2f::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the matrix y:" << endl << y << endl;
-Matrix3x2 x;
-if(m.lu().solve(y, &x))
+Matrix<float,3,2> x = m.lu().solve(y);
+if((m*x).isApprox(y))
{
- assert(y.isApprox(m*x));
cout << "Here is a solution x to the equation mx=y:" << endl << x << endl;
}
else
diff --git a/test/lu.cpp b/test/lu.cpp
index 75680b96b..f366f0e36 100644
--- a/test/lu.cpp
+++ b/test/lu.cpp
@@ -53,10 +53,8 @@ template<typename MatrixType> void lu_non_invertible()
m2 = MatrixType::Random(cols,cols2);
m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
- VERIFY(lu.solve(m3, &m2));
+ m2 = lu.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
- m3 = MatrixType::Random(rows,cols2);
- VERIFY(!lu.solve(m3, &m2));
typedef Matrix<typename MatrixType::Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
SquareMatrixType m4(rows, rows), m5(rows, rows);
@@ -90,11 +88,9 @@ template<typename MatrixType> void lu_invertible()
VERIFY(lu.isInvertible());
VERIFY(lu.image().lu().isInvertible());
m3 = MatrixType::Random(size,size);
- lu.solve(m3, &m2);
+ m2 = lu.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
- m3 = MatrixType::Random(size,size);
- VERIFY(lu.solve(m3, &m2));
}
template<typename MatrixType> void lu_verify_assert()
@@ -109,7 +105,7 @@ template<typename MatrixType> void lu_verify_assert()
VERIFY_RAISES_ASSERT(lu.computeImage(&tmp))
VERIFY_RAISES_ASSERT(lu.kernel())
VERIFY_RAISES_ASSERT(lu.image())
- VERIFY_RAISES_ASSERT(lu.solve(tmp,&tmp))
+ VERIFY_RAISES_ASSERT(lu.solve(tmp))
VERIFY_RAISES_ASSERT(lu.determinant())
VERIFY_RAISES_ASSERT(lu.rank())
VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())