aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Mark Borgerding <mark@borgerding.net>2009-10-20 21:33:48 -0400
committerGravatar Mark Borgerding <mark@borgerding.net>2009-10-20 21:33:48 -0400
commit902b6dcd6c45fef7c23190f19eba361e6b61a8bc (patch)
tree269f11c3eba4d54e9f3ee9b0180f44d41d6c3368
parent5e3e6ff71a314b0a0ca569d6a7726757a39e9434 (diff)
parentd9b418bf12ebd6d6ec25433359767b36eeb619fb (diff)
added Eigen::FFT and
Eigen::Complex
-rw-r--r--bench/benchFFT.cpp115
-rw-r--r--cmake/FindFFTW.cmake24
-rw-r--r--unsupported/Eigen/Complex180
-rw-r--r--unsupported/Eigen/FFT95
-rw-r--r--unsupported/Eigen/src/FFT/ei_fftw_impl.h198
-rw-r--r--unsupported/Eigen/src/FFT/ei_kissfft_impl.h412
-rw-r--r--unsupported/doc/examples/FFT.cpp117
-rw-r--r--unsupported/test/CMakeLists.txt7
-rw-r--r--unsupported/test/FFT.cpp135
-rw-r--r--unsupported/test/FFTW.cpp136
10 files changed, 1419 insertions, 0 deletions
diff --git a/bench/benchFFT.cpp b/bench/benchFFT.cpp
new file mode 100644
index 000000000..4b6cabb55
--- /dev/null
+++ b/bench/benchFFT.cpp
@@ -0,0 +1,115 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#include <complex>
+#include <vector>
+#include <Eigen/Core>
+#include <bench/BenchTimer.h>
+#ifdef USE_FFTW
+#include <fftw3.h>
+#endif
+
+#include <unsupported/Eigen/FFT>
+
+using namespace Eigen;
+using namespace std;
+
+
+template <typename T>
+string nameof();
+
+template <> string nameof<float>() {return "float";}
+template <> string nameof<double>() {return "double";}
+template <> string nameof<long double>() {return "long double";}
+
+#ifndef TYPE
+#define TYPE float
+#endif
+
+#ifndef NFFT
+#define NFFT 1024
+#endif
+#ifndef NDATA
+#define NDATA 1000000
+#endif
+
+using namespace Eigen;
+
+template <typename T>
+void bench(int nfft,bool fwd)
+{
+ typedef typename NumTraits<T>::Real Scalar;
+ typedef typename std::complex<Scalar> Complex;
+ int nits = NDATA/nfft;
+ vector<T> inbuf(nfft);
+ vector<Complex > outbuf(nfft);
+ FFT< Scalar > fft;
+
+ fft.fwd( outbuf , inbuf);
+
+ BenchTimer timer;
+ timer.reset();
+ for (int k=0;k<8;++k) {
+ timer.start();
+ for(int i = 0; i < nits; i++)
+ if (fwd)
+ fft.fwd( outbuf , inbuf);
+ else
+ fft.inv(inbuf,outbuf);
+ timer.stop();
+ }
+
+ cout << nameof<Scalar>() << " ";
+ double mflops = 5.*nfft*log2((double)nfft) / (1e6 * timer.value() / (double)nits );
+ if ( NumTraits<T>::IsComplex ) {
+ cout << "complex";
+ }else{
+ cout << "real ";
+ mflops /= 2;
+ }
+
+ if (fwd)
+ cout << " fwd";
+ else
+ cout << " inv";
+
+ cout << " NFFT=" << nfft << " " << (double(1e-6*nfft*nits)/timer.value()) << " MS/s " << mflops << "MFLOPS\n";
+}
+
+int main(int argc,char ** argv)
+{
+ bench<complex<float> >(NFFT,true);
+ bench<complex<float> >(NFFT,false);
+ bench<float>(NFFT,true);
+ bench<float>(NFFT,false);
+ bench<complex<double> >(NFFT,true);
+ bench<complex<double> >(NFFT,false);
+ bench<double>(NFFT,true);
+ bench<double>(NFFT,false);
+ bench<complex<long double> >(NFFT,true);
+ bench<complex<long double> >(NFFT,false);
+ bench<long double>(NFFT,true);
+ bench<long double>(NFFT,false);
+ return 0;
+}
diff --git a/cmake/FindFFTW.cmake b/cmake/FindFFTW.cmake
new file mode 100644
index 000000000..a56450b17
--- /dev/null
+++ b/cmake/FindFFTW.cmake
@@ -0,0 +1,24 @@
+
+if (FFTW_INCLUDES AND FFTW_LIBRARIES)
+ set(FFTW_FIND_QUIETLY TRUE)
+endif (FFTW_INCLUDES AND FFTW_LIBRARIES)
+
+find_path(FFTW_INCLUDES
+ NAMES
+ fftw3.h
+ PATHS
+ $ENV{FFTWDIR}
+ ${INCLUDE_INSTALL_DIR}
+)
+
+find_library(FFTWF_LIB NAMES fftw3f PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
+find_library(FFTW_LIB NAMES fftw3 PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
+find_library(FFTWL_LIB NAMES fftw3l PATHS $ENV{FFTWDIR} ${LIB_INSTALL_DIR})
+set(FFTW_LIBRARIES "${FFTWF_LIB} ${FFTW_LIB} ${FFTWL_LIB}" )
+message(STATUS "FFTW ${FFTW_LIBRARIES}" )
+
+include(FindPackageHandleStandardArgs)
+find_package_handle_standard_args(FFTW DEFAULT_MSG
+ FFTW_INCLUDES FFTW_LIBRARIES)
+
+mark_as_advanced(FFTW_INCLUDES FFTW_LIBRARIES)
diff --git a/unsupported/Eigen/Complex b/unsupported/Eigen/Complex
new file mode 100644
index 000000000..a0483abdf
--- /dev/null
+++ b/unsupported/Eigen/Complex
@@ -0,0 +1,180 @@
+#ifndef EIGEN_COMPLEX_H
+#define EIGEN_COMPLEX_H
+
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+// Eigen::Complex reuses as much as possible from std::complex
+// and allows easy conversion to and from, even at the pointer level.
+
+
+#include <complex>
+
+namespace Eigen {
+
+template <typename _NativePtr,typename _PunnedPtr>
+struct castable_pointer
+{
+ castable_pointer(_NativePtr ptr) : _ptr(ptr) {}
+ operator _NativePtr () {return _ptr;}
+ operator _PunnedPtr () {return reinterpret_cast<_PunnedPtr>(_ptr);}
+ private:
+ _NativePtr _ptr;
+};
+
+template <typename T>
+struct Complex
+{
+ typedef typename std::complex<T> StandardComplex;
+ typedef T value_type;
+
+ // constructors
+ Complex(const T& re = T(), const T& im = T()) : _re(re),_im(im) { }
+ Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {}
+
+ template<class X>
+ Complex(const Complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
+ template<class X>
+ Complex(const std::complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
+
+
+ // allow binary access to the object as a std::complex
+ typedef castable_pointer< Complex<T>*, StandardComplex* > pointer_type;
+ typedef castable_pointer< const Complex<T>*, const StandardComplex* > const_pointer_type;
+ pointer_type operator & () {return pointer_type(this);}
+ const_pointer_type operator & () const {return const_pointer_type(this);}
+
+ operator StandardComplex () const {return std_type();}
+ operator StandardComplex & () {return std_type();}
+
+ StandardComplex std_type() const {return StandardComplex(real(),imag());}
+ StandardComplex & std_type() {return *reinterpret_cast<StandardComplex*>(this);}
+
+
+ // every sort of accessor and mutator that has ever been in fashion.
+ // For a brief history, search for "std::complex over-encapsulated"
+ // http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
+ const T & real() const {return _re;}
+ const T & imag() const {return _im;}
+ T & real() {return _re;}
+ T & imag() {return _im;}
+ T & real(const T & x) {return _re=x;}
+ T & imag(const T & x) {return _im=x;}
+ void set_real(const T & x) {_re = x;}
+ void set_imag(const T & x) {_im = x;}
+
+ // *** complex member functions: ***
+ Complex<T>& operator= (const T& val) { _re=val;_im=0;return *this; }
+ Complex<T>& operator+= (const T& val) {_re+=val;return *this;}
+ Complex<T>& operator-= (const T& val) {_re-=val;return *this;}
+ Complex<T>& operator*= (const T& val) {_re*=val;_im*=val;return *this; }
+ Complex<T>& operator/= (const T& val) {_re/=val;_im/=val;return *this; }
+
+ Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;}
+ Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;}
+
+ template<class X> Complex<T>& operator= (const Complex<X>& rhs) { _re=rhs._re;_im=rhs._im;return *this;}
+ template<class X> Complex<T>& operator+= (const Complex<X>& rhs) { _re+=rhs._re;_im+=rhs._im;return *this;}
+ template<class X> Complex<T>& operator-= (const Complex<X>& rhs) { _re-=rhs._re;_im-=rhs._im;return *this;}
+ template<class X> Complex<T>& operator*= (const Complex<X>& rhs) { this->std_type() *= rhs.std_type(); return *this; }
+ template<class X> Complex<T>& operator/= (const Complex<X>& rhs) { this->std_type() /= rhs.std_type(); return *this; }
+
+ private:
+ T _re;
+ T _im;
+};
+
+template <typename T>
+T ei_to_std( const T & x) {return x;}
+
+template <typename T>
+std::complex<T> ei_to_std( const Complex<T> & x) {return x.std_type();}
+
+// 26.2.6 operators
+template<class T> Complex<T> operator+(const Complex<T>& rhs) {return rhs;}
+template<class T> Complex<T> operator-(const Complex<T>& rhs) {return -ei_to_std(rhs);}
+
+template<class T> Complex<T> operator+(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) + ei_to_std(rhs);}
+template<class T> Complex<T> operator-(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) - ei_to_std(rhs);}
+template<class T> Complex<T> operator*(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) * ei_to_std(rhs);}
+template<class T> Complex<T> operator/(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) / ei_to_std(rhs);}
+template<class T> bool operator==(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) == ei_to_std(rhs);}
+template<class T> bool operator!=(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) != ei_to_std(rhs);}
+
+template<class T> Complex<T> operator+(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
+template<class T> Complex<T> operator-(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
+template<class T> Complex<T> operator*(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
+template<class T> Complex<T> operator/(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
+template<class T> bool operator==(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
+template<class T> bool operator!=(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
+
+template<class T> Complex<T> operator+(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
+template<class T> Complex<T> operator-(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
+template<class T> Complex<T> operator*(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
+template<class T> Complex<T> operator/(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
+template<class T> bool operator==(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
+template<class T> bool operator!=(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
+
+template<class T, class charT, class traits>
+std::basic_istream<charT,traits>&
+ operator>> (std::basic_istream<charT,traits>& istr, Complex<T>& rhs)
+{
+ return istr >> rhs.std_type();
+}
+
+template<class T, class charT, class traits>
+std::basic_ostream<charT,traits>&
+operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
+{
+ return ostr << rhs.std_type();
+}
+
+ // 26.2.7 values:
+ template<class T> T real(const Complex<T>&x) {return real(ei_to_std(x));}
+ template<class T> T abs(const Complex<T>&x) {return abs(ei_to_std(x));}
+ template<class T> T arg(const Complex<T>&x) {return arg(ei_to_std(x));}
+ template<class T> T norm(const Complex<T>&x) {return norm(ei_to_std(x));}
+
+ template<class T> Complex<T> conj(const Complex<T>&x) { return conj(ei_to_std(x));}
+ template<class T> Complex<T> polar(const T& x, const T&y) {return polar(ei_to_std(x),ei_to_std(y));}
+ // 26.2.8 transcendentals:
+ template<class T> Complex<T> cos (const Complex<T>&x){return cos(ei_to_std(x));}
+ template<class T> Complex<T> cosh (const Complex<T>&x){return cosh(ei_to_std(x));}
+ template<class T> Complex<T> exp (const Complex<T>&x){return exp(ei_to_std(x));}
+ template<class T> Complex<T> log (const Complex<T>&x){return log(ei_to_std(x));}
+ template<class T> Complex<T> log10 (const Complex<T>&x){return log10(ei_to_std(x));}
+
+ template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),ei_to_std(p));}
+ template<class T> Complex<T> pow(const Complex<T>&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));}
+ template<class T> Complex<T> pow(const Complex<T>&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
+ template<class T> Complex<T> pow(const T&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
+
+ template<class T> Complex<T> sin (const Complex<T>&x){return sin(ei_to_std(x));}
+ template<class T> Complex<T> sinh (const Complex<T>&x){return sinh(ei_to_std(x));}
+ template<class T> Complex<T> sqrt (const Complex<T>&x){return sqrt(ei_to_std(x));}
+ template<class T> Complex<T> tan (const Complex<T>&x){return tan(ei_to_std(x));}
+ template<class T> Complex<T> tanh (const Complex<T>&x){return tanh(ei_to_std(x));}
+}
+
+#endif
diff --git a/unsupported/Eigen/FFT b/unsupported/Eigen/FFT
new file mode 100644
index 000000000..dc7e85908
--- /dev/null
+++ b/unsupported/Eigen/FFT
@@ -0,0 +1,95 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_FFT_H
+#define EIGEN_FFT_H
+
+// ei_kissfft_impl: small, free, reasonably efficient default, derived from kissfft
+#include "src/FFT/ei_kissfft_impl.h"
+#define DEFAULT_FFT_IMPL ei_kissfft_impl
+
+// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
+#ifdef FFTW_ESTIMATE // definition of FFTW_ESTIMATE indicates the caller has included fftw3.h, we can use FFTW routines
+#include "src/FFT/ei_fftw_impl.h"
+#undef DEFAULT_FFT_IMPL
+#define DEFAULT_FFT_IMPL ei_fftw_impl
+#endif
+
+// intel Math Kernel Library: fastest, commerical -- incompatible with Eigen in GPL form
+#ifdef _MKL_DFTI_H_ // mkl_dfti.h has been included, we can use MKL FFT routines
+// TODO
+// #include "src/FFT/ei_imkl_impl.h"
+// #define DEFAULT_FFT_IMPL ei_imkl_impl
+#endif
+
+namespace Eigen {
+
+template <typename _Scalar,
+ typename _Traits=DEFAULT_FFT_IMPL<_Scalar>
+ >
+class FFT
+{
+ public:
+ typedef _Traits traits_type;
+ typedef typename traits_type::Scalar Scalar;
+ typedef typename traits_type::Complex Complex;
+
+ FFT(const traits_type & traits=traits_type() ) :m_traits(traits) { }
+
+ template <typename _Input>
+ void fwd( Complex * dst, const _Input * src, int nfft)
+ {
+ m_traits.fwd(dst,src,nfft);
+ }
+
+ template <typename _Input>
+ void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
+ {
+ dst.resize( src.size() );
+ fwd( &dst[0],&src[0],src.size() );
+ }
+
+ template <typename _Output>
+ void inv( _Output * dst, const Complex * src, int nfft)
+ {
+ m_traits.inv( dst,src,nfft );
+ }
+
+ template <typename _Output>
+ void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
+ {
+ dst.resize( src.size() );
+ inv( &dst[0],&src[0],src.size() );
+ }
+
+ // TODO: multi-dimensional FFTs
+ // TODO: handle Eigen MatrixBase
+
+ traits_type & traits() {return m_traits;}
+ private:
+ traits_type m_traits;
+};
+#undef DEFAULT_FFT_IMPL
+}
+#endif
diff --git a/unsupported/Eigen/src/FFT/ei_fftw_impl.h b/unsupported/Eigen/src/FFT/ei_fftw_impl.h
new file mode 100644
index 000000000..d592bbb20
--- /dev/null
+++ b/unsupported/Eigen/src/FFT/ei_fftw_impl.h
@@ -0,0 +1,198 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+namespace Eigen {
+ // FFTW uses non-const arguments
+ // so we must use ugly const_cast calls for all the args it uses
+ //
+ // This should be safe as long as
+ // 1. we use FFTW_ESTIMATE for all our planning
+ // see the FFTW docs section 4.3.2 "Planner Flags"
+ // 2. fftw_complex is compatible with std::complex
+ // This assumes std::complex<T> layout is array of size 2 with real,imag
+ template <typename T>
+ T * ei_fftw_cast(const T* p)
+ {
+ return const_cast<T*>( p);
+ }
+
+ fftw_complex * ei_fftw_cast( const std::complex<double> * p)
+ {
+ return const_cast<fftw_complex*>( reinterpret_cast<const fftw_complex*>(p) );
+ }
+
+ fftwf_complex * ei_fftw_cast( const std::complex<float> * p)
+ {
+ return const_cast<fftwf_complex*>( reinterpret_cast<const fftwf_complex*>(p) );
+ }
+
+ fftwl_complex * ei_fftw_cast( const std::complex<long double> * p)
+ {
+ return const_cast<fftwl_complex*>( reinterpret_cast<const fftwl_complex*>(p) );
+ }
+
+ template <typename T>
+ struct ei_fftw_plan {};
+
+ template <>
+ struct ei_fftw_plan<float>
+ {
+ typedef float scalar_type;
+ typedef fftwf_complex complex_type;
+ fftwf_plan m_plan;
+ ei_fftw_plan() :m_plan(NULL) {}
+ ~ei_fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
+
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ fftwf_execute_dft( m_plan, src,dst);
+ }
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftwf_execute_dft_r2c( m_plan,src,dst);
+ }
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftwf_execute_dft_c2r( m_plan, src,dst);
+ }
+ };
+ template <>
+ struct ei_fftw_plan<double>
+ {
+ typedef double scalar_type;
+ typedef fftw_complex complex_type;
+ fftw_plan m_plan;
+ ei_fftw_plan() :m_plan(NULL) {}
+ ~ei_fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
+
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ fftw_execute_dft( m_plan, src,dst);
+ }
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftw_execute_dft_r2c( m_plan,src,dst);
+ }
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftw_execute_dft_c2r( m_plan, src,dst);
+ }
+ };
+ template <>
+ struct ei_fftw_plan<long double>
+ {
+ typedef long double scalar_type;
+ typedef fftwl_complex complex_type;
+ fftwl_plan m_plan;
+ ei_fftw_plan() :m_plan(NULL) {}
+ ~ei_fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
+
+ void fwd(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ void inv(complex_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ fftwl_execute_dft( m_plan, src,dst);
+ }
+ void fwd(complex_type * dst,scalar_type * src,int nfft) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftwl_execute_dft_r2c( m_plan,src,dst);
+ }
+ void inv(scalar_type * dst,complex_type * src,int nfft) {
+ if (m_plan==NULL)
+ m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ fftwl_execute_dft_c2r( m_plan, src,dst);
+ }
+ };
+
+ template <typename _Scalar>
+ struct ei_fftw_impl
+ {
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+
+ void clear()
+ {
+ m_plans.clear();
+ }
+
+ void fwd( Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
+ }
+
+ // real-to-complex forward FFT
+ void fwd( Complex * dst,const Scalar * src,int nfft)
+ {
+ get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
+ int nhbins=(nfft>>1)+1;
+ for (int k=nhbins;k < nfft; ++k )
+ dst[k] = conj(dst[nfft-k]);
+ }
+
+ // inverse complex-to-complex
+ void inv(Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
+ // scaling
+ Scalar s = 1./nfft;
+ for (int k=0;k<nfft;++k)
+ dst[k] *= s;
+ }
+
+ // half-complex to scalar
+ void inv( Scalar * dst,const Complex * src,int nfft)
+ {
+ get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
+ Scalar s = 1./nfft;
+ for (int k=0;k<nfft;++k)
+ dst[k] *= s;
+ }
+
+ private:
+ typedef ei_fftw_plan<Scalar> PlanData;
+ typedef std::map<int,PlanData> PlanMap;
+
+ PlanMap m_plans;
+
+ PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
+ {
+ bool inplace = (dst==src);
+ bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
+ int key = (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned;
+ return m_plans[key];
+ }
+ };
+}
diff --git a/unsupported/Eigen/src/FFT/ei_kissfft_impl.h b/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
new file mode 100644
index 000000000..a84ac68a0
--- /dev/null
+++ b/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
@@ -0,0 +1,412 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#include <complex>
+#include <vector>
+#include <map>
+
+namespace Eigen {
+
+ // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
+ // Copyright 2003-2009 Mark Borgerding
+
+ template <typename _Scalar>
+ struct ei_kiss_cpx_fft
+ {
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+ std::vector<Complex> m_twiddles;
+ std::vector<int> m_stageRadix;
+ std::vector<int> m_stageRemainder;
+ std::vector<Complex> m_scratchBuf;
+ bool m_inverse;
+
+ void make_twiddles(int nfft,bool inverse)
+ {
+ m_inverse = inverse;
+ m_twiddles.resize(nfft);
+ Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
+ for (int i=0;i<nfft;++i)
+ m_twiddles[i] = exp( Complex(0,i*phinc) );
+ }
+
+ void conjugate()
+ {
+ m_inverse = !m_inverse;
+ for ( size_t i=0;i<m_twiddles.size() ;++i)
+ m_twiddles[i] = conj( m_twiddles[i] );
+ }
+
+ void factorize(int nfft)
+ {
+ //start factoring out 4's, then 2's, then 3,5,7,9,...
+ int n= nfft;
+ int p=4;
+ do {
+ while (n % p) {
+ switch (p) {
+ case 4: p = 2; break;
+ case 2: p = 3; break;
+ default: p += 2; break;
+ }
+ if (p*p>n)
+ p=n;// impossible to have a factor > sqrt(n)
+ }
+ n /= p;
+ m_stageRadix.push_back(p);
+ m_stageRemainder.push_back(n);
+ if ( p > 5 )
+ m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
+ }while(n>1);
+ }
+
+ template <typename _Src>
+ void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
+ {
+ int p = m_stageRadix[stage];
+ int m = m_stageRemainder[stage];
+ Complex * Fout_beg = xout;
+ Complex * Fout_end = xout + p*m;
+
+ if (m>1) {
+ do{
+ // recursive call:
+ // DFT of size m*p performed by doing
+ // p instances of smaller DFTs of size m,
+ // each one takes a decimated version of the input
+ work(stage+1, xout , xin, fstride*p,in_stride);
+ xin += fstride*in_stride;
+ }while( (xout += m) != Fout_end );
+ }else{
+ do{
+ *xout = *xin;
+ xin += fstride*in_stride;
+ }while(++xout != Fout_end );
+ }
+ xout=Fout_beg;
+
+ // recombine the p smaller DFTs
+ switch (p) {
+ case 2: bfly2(xout,fstride,m); break;
+ case 3: bfly3(xout,fstride,m); break;
+ case 4: bfly4(xout,fstride,m); break;
+ case 5: bfly5(xout,fstride,m); break;
+ default: bfly_generic(xout,fstride,m,p); break;
+ }
+ }
+
+ void bfly2( Complex * Fout, const size_t fstride, int m)
+ {
+ for (int k=0;k<m;++k) {
+ Complex t = Fout[m+k] * m_twiddles[k*fstride];
+ Fout[m+k] = Fout[k] - t;
+ Fout[k] += t;
+ }
+ }
+
+ void bfly4( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ Complex scratch[6];
+ int negative_if_inverse = m_inverse * -2 +1;
+ for (size_t k=0;k<m;++k) {
+ scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
+ scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
+ scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
+ scratch[5] = Fout[k] - scratch[1];
+
+ Fout[k] += scratch[1];
+ scratch[3] = scratch[0] + scratch[2];
+ scratch[4] = scratch[0] - scratch[2];
+ scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
+
+ Fout[k+2*m] = Fout[k] - scratch[3];
+ Fout[k] += scratch[3];
+ Fout[k+m] = scratch[5] + scratch[4];
+ Fout[k+3*m] = scratch[5] - scratch[4];
+ }
+ }
+
+ void bfly3( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ size_t k=m;
+ const size_t m2 = 2*m;
+ Complex *tw1,*tw2;
+ Complex scratch[5];
+ Complex epi3;
+ epi3 = m_twiddles[fstride*m];
+
+ tw1=tw2=&m_twiddles[0];
+
+ do{
+ scratch[1]=Fout[m] * *tw1;
+ scratch[2]=Fout[m2] * *tw2;
+
+ scratch[3]=scratch[1]+scratch[2];
+ scratch[0]=scratch[1]-scratch[2];
+ tw1 += fstride;
+ tw2 += fstride*2;
+ Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
+ scratch[0] *= epi3.imag();
+ *Fout += scratch[3];
+ Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
+ Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
+ ++Fout;
+ }while(--k);
+ }
+
+ void bfly5( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
+ size_t u;
+ Complex scratch[13];
+ Complex * twiddles = &m_twiddles[0];
+ Complex *tw;
+ Complex ya,yb;
+ ya = twiddles[fstride*m];
+ yb = twiddles[fstride*2*m];
+
+ Fout0=Fout;
+ Fout1=Fout0+m;
+ Fout2=Fout0+2*m;
+ Fout3=Fout0+3*m;
+ Fout4=Fout0+4*m;
+
+ tw=twiddles;
+ for ( u=0; u<m; ++u ) {
+ scratch[0] = *Fout0;
+
+ scratch[1] = *Fout1 * tw[u*fstride];
+ scratch[2] = *Fout2 * tw[2*u*fstride];
+ scratch[3] = *Fout3 * tw[3*u*fstride];
+ scratch[4] = *Fout4 * tw[4*u*fstride];
+
+ scratch[7] = scratch[1] + scratch[4];
+ scratch[10] = scratch[1] - scratch[4];
+ scratch[8] = scratch[2] + scratch[3];
+ scratch[9] = scratch[2] - scratch[3];
+
+ *Fout0 += scratch[7];
+ *Fout0 += scratch[8];
+
+ scratch[5] = scratch[0] + Complex(
+ (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
+ (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
+ );
+
+ scratch[6] = Complex(
+ (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
+ -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
+ );
+
+ *Fout1 = scratch[5] - scratch[6];
+ *Fout4 = scratch[5] + scratch[6];
+
+ scratch[11] = scratch[0] +
+ Complex(
+ (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
+ (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
+ );
+
+ scratch[12] = Complex(
+ -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
+ (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
+ );
+
+ *Fout2=scratch[11]+scratch[12];
+ *Fout3=scratch[11]-scratch[12];
+
+ ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
+ }
+ }
+
+ /* perform the butterfly for one stage of a mixed radix FFT */
+ void bfly_generic(
+ Complex * Fout,
+ const size_t fstride,
+ int m,
+ int p
+ )
+ {
+ int u,k,q1,q;
+ Complex * twiddles = &m_twiddles[0];
+ Complex t;
+ int Norig = m_twiddles.size();
+ Complex * scratchbuf = &m_scratchBuf[0];
+
+ for ( u=0; u<m; ++u ) {
+ k=u;
+ for ( q1=0 ; q1<p ; ++q1 ) {
+ scratchbuf[q1] = Fout[ k ];
+ k += m;
+ }
+
+ k=u;
+ for ( q1=0 ; q1<p ; ++q1 ) {
+ int twidx=0;
+ Fout[ k ] = scratchbuf[0];
+ for (q=1;q<p;++q ) {
+ twidx += fstride * k;
+ if (twidx>=Norig) twidx-=Norig;
+ t=scratchbuf[q] * twiddles[twidx];
+ Fout[ k ] += t;
+ }
+ k += m;
+ }
+ }
+ }
+ };
+
+ template <typename _Scalar>
+ struct ei_kissfft_impl
+ {
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+
+ void clear()
+ {
+ m_plans.clear();
+ m_realTwiddles.clear();
+ }
+
+ template <typename _Src>
+ void fwd( Complex * dst,const _Src *src,int nfft)
+ {
+ get_plan(nfft,false).work(0, dst, src, 1,1);
+ }
+
+ // real-to-complex forward FFT
+ // perform two FFTs of src even and src odd
+ // then twiddle to recombine them into the half-spectrum format
+ // then fill in the conjugate symmetric half
+ void fwd( Complex * dst,const Scalar * src,int nfft)
+ {
+ if ( nfft&3 ) {
+ // use generic mode for odd
+ get_plan(nfft,false).work(0, dst, src, 1,1);
+ }else{
+ int ncfft = nfft>>1;
+ int ncfft2 = nfft>>2;
+ Complex * rtw = real_twiddles(ncfft2);
+
+ // use optimized mode for even real
+ fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
+ Complex dc = dst[0].real() + dst[0].imag();
+ Complex nyquist = dst[0].real() - dst[0].imag();
+ int k;
+ for ( k=1;k <= ncfft2 ; ++k ) {
+ Complex fpk = dst[k];
+ Complex fpnk = conj(dst[ncfft-k]);
+ Complex f1k = fpk + fpnk;
+ Complex f2k = fpk - fpnk;
+ Complex tw= f2k * rtw[k-1];
+ dst[k] = (f1k + tw) * Scalar(.5);
+ dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
+ }
+
+ // place conjugate-symmetric half at the end for completeness
+ // TODO: make this configurable ( opt-out )
+ for ( k=1;k < ncfft ; ++k )
+ dst[nfft-k] = conj(dst[k]);
+ dst[0] = dc;
+ dst[ncfft] = nyquist;
+ }
+ }
+
+ // inverse complex-to-complex
+ void inv(Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,true).work(0, dst, src, 1,1);
+ scale(dst, nfft, Scalar(1)/nfft );
+ }
+
+ // half-complex to scalar
+ void inv( Scalar * dst,const Complex * src,int nfft)
+ {
+ if (nfft&3) {
+ m_tmpBuf.resize(nfft);
+ inv(&m_tmpBuf[0],src,nfft);
+ for (int k=0;k<nfft;++k)
+ dst[k] = m_tmpBuf[k].real();
+ }else{
+ // optimized version for multiple of 4
+ int ncfft = nfft>>1;
+ int ncfft2 = nfft>>2;
+ Complex * rtw = real_twiddles(ncfft2);
+ m_tmpBuf.resize(ncfft);
+ m_tmpBuf[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
+ for (int k = 1; k <= ncfft / 2; ++k) {
+ Complex fk = src[k];
+ Complex fnkc = conj(src[ncfft-k]);
+ Complex fek = fk + fnkc;
+ Complex tmp = fk - fnkc;
+ Complex fok = tmp * conj(rtw[k-1]);
+ m_tmpBuf[k] = fek + fok;
+ m_tmpBuf[ncfft-k] = conj(fek - fok);
+ }
+ scale(&m_tmpBuf[0], ncfft, Scalar(1)/nfft );
+ get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf[0], 1,1);
+ }
+ }
+
+ private:
+ typedef ei_kiss_cpx_fft<Scalar> PlanData;
+ typedef std::map<int,PlanData> PlanMap;
+
+ PlanMap m_plans;
+ std::map<int, std::vector<Complex> > m_realTwiddles;
+ std::vector<Complex> m_tmpBuf;
+
+ int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
+
+ PlanData & get_plan(int nfft,bool inverse)
+ {
+ // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
+ PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
+ if ( pd.m_twiddles.size() == 0 ) {
+ pd.make_twiddles(nfft,inverse);
+ pd.factorize(nfft);
+ }
+ return pd;
+ }
+
+ Complex * real_twiddles(int ncfft2)
+ {
+ std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
+ if ( (int)twidref.size() != ncfft2 ) {
+ twidref.resize(ncfft2);
+ int ncfft= ncfft2<<1;
+ Scalar pi = acos( Scalar(-1) );
+ for (int k=1;k<=ncfft2;++k)
+ twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
+ }
+ return &twidref[0];
+ }
+
+ void scale(Complex *dst,int n,Scalar s)
+ {
+ for (int k=0;k<n;++k)
+ dst[k] *= s;
+ }
+ };
+}
diff --git a/unsupported/doc/examples/FFT.cpp b/unsupported/doc/examples/FFT.cpp
new file mode 100644
index 000000000..55e29585a
--- /dev/null
+++ b/unsupported/doc/examples/FFT.cpp
@@ -0,0 +1,117 @@
+// To use the simple FFT implementation
+// g++ -o demofft -I.. -Wall -O3 FFT.cpp
+
+// To use the FFTW implementation
+// g++ -o demofft -I.. -DUSE_FFTW -Wall -O3 FFT.cpp -lfftw3 -lfftw3f -lfftw3l
+
+#ifdef USE_FFTW
+#include <fftw3.h>
+#endif
+
+#include <vector>
+#include <complex>
+#include <algorithm>
+#include <iterator>
+#include <Eigen/Core>
+#include <unsupported/Eigen/FFT>
+
+using namespace std;
+using namespace Eigen;
+
+template <typename T>
+T mag2(T a)
+{
+ return a*a;
+}
+template <typename T>
+T mag2(std::complex<T> a)
+{
+ return norm(a);
+}
+
+template <typename T>
+T mag2(const std::vector<T> & vec)
+{
+ T out=0;
+ for (size_t k=0;k<vec.size();++k)
+ out += mag2(vec[k]);
+ return out;
+}
+
+template <typename T>
+T mag2(const std::vector<std::complex<T> > & vec)
+{
+ T out=0;
+ for (size_t k=0;k<vec.size();++k)
+ out += mag2(vec[k]);
+ return out;
+}
+
+template <typename T>
+vector<T> operator-(const vector<T> & a,const vector<T> & b )
+{
+ vector<T> c(a);
+ for (size_t k=0;k<b.size();++k)
+ c[k] -= b[k];
+ return c;
+}
+
+template <typename T>
+void RandomFill(std::vector<T> & vec)
+{
+ for (size_t k=0;k<vec.size();++k)
+ vec[k] = T( rand() )/T(RAND_MAX) - .5;
+}
+
+template <typename T>
+void RandomFill(std::vector<std::complex<T> > & vec)
+{
+ for (size_t k=0;k<vec.size();++k)
+ vec[k] = std::complex<T> ( T( rand() )/T(RAND_MAX) - .5, T( rand() )/T(RAND_MAX) - .5);
+}
+
+template <typename T_time,typename T_freq>
+void fwd_inv(size_t nfft)
+{
+ typedef typename NumTraits<T_freq>::Real Scalar;
+ vector<T_time> timebuf(nfft);
+ RandomFill(timebuf);
+
+ vector<T_freq> freqbuf;
+ static FFT<Scalar> fft;
+ fft.fwd(freqbuf,timebuf);
+
+ vector<T_time> timebuf2;
+ fft.inv(timebuf2,freqbuf);
+
+ long double rmse = mag2(timebuf - timebuf2) / mag2(timebuf);
+ cout << "roundtrip rmse: " << rmse << endl;
+}
+
+template <typename T_scalar>
+void two_demos(int nfft)
+{
+ cout << " scalar ";
+ fwd_inv<T_scalar,std::complex<T_scalar> >(nfft);
+ cout << " complex ";
+ fwd_inv<std::complex<T_scalar>,std::complex<T_scalar> >(nfft);
+}
+
+void demo_all_types(int nfft)
+{
+ cout << "nfft=" << nfft << endl;
+ cout << " float" << endl;
+ two_demos<float>(nfft);
+ cout << " double" << endl;
+ two_demos<double>(nfft);
+ cout << " long double" << endl;
+ two_demos<long double>(nfft);
+}
+
+int main()
+{
+ demo_all_types( 2*3*4*5*7 );
+ demo_all_types( 2*9*16*25 );
+ demo_all_types( 1024 );
+ return 0;
+}
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index abfbb0185..f42077bdc 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -19,3 +19,10 @@ ei_add_test(autodiff)
ei_add_test(BVH)
ei_add_test(matrixExponential)
ei_add_test(alignedvector3)
+ei_add_test(FFT)
+
+find_package(FFTW)
+if(FFTW_FOUND)
+ ei_add_test(FFTW " " "-lfftw3 -lfftw3f -lfftw3l" )
+endif(FFTW_FOUND)
+
diff --git a/unsupported/test/FFT.cpp b/unsupported/test/FFT.cpp
new file mode 100644
index 000000000..f0b9b68bf
--- /dev/null
+++ b/unsupported/test/FFT.cpp
@@ -0,0 +1,135 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#include "main.h"
+#include <unsupported/Eigen/FFT>
+
+using namespace std;
+
+float norm(float x) {return x*x;}
+double norm(double x) {return x*x;}
+long double norm(long double x) {return x*x;}
+
+template < typename T>
+complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
+
+complex<long double> promote(float x) { return complex<long double>( x); }
+complex<long double> promote(double x) { return complex<long double>( x); }
+complex<long double> promote(long double x) { return complex<long double>( x); }
+
+
+ template <typename T1,typename T2>
+ long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
+ {
+ long double totalpower=0;
+ long double difpower=0;
+ cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
+ for (size_t k0=0;k0<fftbuf.size();++k0) {
+ complex<long double> acc = 0;
+ long double phinc = -2.*k0* M_PIl / timebuf.size();
+ for (size_t k1=0;k1<timebuf.size();++k1) {
+ acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
+ }
+ totalpower += norm(acc);
+ complex<long double> x = promote(fftbuf[k0]);
+ complex<long double> dif = acc - x;
+ difpower += norm(dif);
+ cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
+ }
+ cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
+ return sqrt(difpower/totalpower);
+ }
+
+ template <typename T1,typename T2>
+ long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
+ {
+ long double totalpower=0;
+ long double difpower=0;
+ size_t n = min( buf1.size(),buf2.size() );
+ for (size_t k=0;k<n;++k) {
+ totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
+ difpower += norm(buf1[k] - buf2[k]);
+ }
+ return sqrt(difpower/totalpower);
+ }
+
+template <class T>
+void test_scalar(int nfft)
+{
+ typedef typename Eigen::FFT<T>::Complex Complex;
+ typedef typename Eigen::FFT<T>::Scalar Scalar;
+
+ FFT<T> fft;
+ vector<Scalar> inbuf(nfft);
+ vector<Complex> outbuf;
+ for (int k=0;k<nfft;++k)
+ inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
+ fft.fwd( outbuf,inbuf);
+ VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
+
+ vector<Scalar> buf3;
+ fft.inv( buf3 , outbuf);
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+}
+
+template <class T>
+void test_complex(int nfft)
+{
+ typedef typename Eigen::FFT<T>::Complex Complex;
+
+ FFT<T> fft;
+
+ vector<Complex> inbuf(nfft);
+ vector<Complex> outbuf;
+ vector<Complex> buf3;
+ for (int k=0;k<nfft;++k)
+ inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
+ fft.fwd( outbuf , inbuf);
+
+ VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
+
+ fft.inv( buf3 , outbuf);
+
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+}
+
+void test_FFT()
+{
+
+ CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
+ CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
+ CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
+ CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
+ CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
+ CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
+ CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
+
+
+
+ CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
+ CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
+ CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
+ CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) );
+ CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
+}
diff --git a/unsupported/test/FFTW.cpp b/unsupported/test/FFTW.cpp
new file mode 100644
index 000000000..cf7be75aa
--- /dev/null
+++ b/unsupported/test/FFTW.cpp
@@ -0,0 +1,136 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#include "main.h"
+#include <fftw3.h>
+#include <unsupported/Eigen/FFT>
+
+using namespace std;
+
+float norm(float x) {return x*x;}
+double norm(double x) {return x*x;}
+long double norm(long double x) {return x*x;}
+
+template < typename T>
+complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
+
+complex<long double> promote(float x) { return complex<long double>( x); }
+complex<long double> promote(double x) { return complex<long double>( x); }
+complex<long double> promote(long double x) { return complex<long double>( x); }
+
+
+ template <typename T1,typename T2>
+ long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
+ {
+ long double totalpower=0;
+ long double difpower=0;
+ cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
+ for (size_t k0=0;k0<fftbuf.size();++k0) {
+ complex<long double> acc = 0;
+ long double phinc = -2.*k0* M_PIl / timebuf.size();
+ for (size_t k1=0;k1<timebuf.size();++k1) {
+ acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
+ }
+ totalpower += norm(acc);
+ complex<long double> x = promote(fftbuf[k0]);
+ complex<long double> dif = acc - x;
+ difpower += norm(dif);
+ cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
+ }
+ cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
+ return sqrt(difpower/totalpower);
+ }
+
+ template <typename T1,typename T2>
+ long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
+ {
+ long double totalpower=0;
+ long double difpower=0;
+ size_t n = min( buf1.size(),buf2.size() );
+ for (size_t k=0;k<n;++k) {
+ totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
+ difpower += norm(buf1[k] - buf2[k]);
+ }
+ return sqrt(difpower/totalpower);
+ }
+
+template <class T>
+void test_scalar(int nfft)
+{
+ typedef typename Eigen::FFT<T>::Complex Complex;
+ typedef typename Eigen::FFT<T>::Scalar Scalar;
+
+ FFT<T> fft;
+ vector<Scalar> inbuf(nfft);
+ vector<Complex> outbuf;
+ for (int k=0;k<nfft;++k)
+ inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
+ fft.fwd( outbuf,inbuf);
+ VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
+
+ vector<Scalar> buf3;
+ fft.inv( buf3 , outbuf);
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+}
+
+template <class T>
+void test_complex(int nfft)
+{
+ typedef typename Eigen::FFT<T>::Complex Complex;
+
+ FFT<T> fft;
+
+ vector<Complex> inbuf(nfft);
+ vector<Complex> outbuf;
+ vector<Complex> buf3;
+ for (int k=0;k<nfft;++k)
+ inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
+ fft.fwd( outbuf , inbuf);
+
+ VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
+
+ fft.inv( buf3 , outbuf);
+
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+}
+
+void test_FFTW()
+{
+
+ CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
+ CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
+ CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
+ CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
+ CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
+ CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
+ CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
+
+
+
+ CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
+ CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
+ CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
+ CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) );
+ CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
+}