1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
// RUN: %dafny /compile:0 "%s" > "%t"
// RUN: %diff "%s.expect" "%t"
abstract module Monad {
type M<A>
function method Return(x: A): M<A>
function method Bind(m: M<A>, f:A -> M<B>):M<B>
reads f.reads;
requires forall a :: f.requires(a);
// return x >>= f = f x
lemma LeftIdentity(x : A, f : A -> M<B>)
requires forall a :: f.requires(a);
ensures Bind(Return(x),f) == f(x);
// m >>= return = m
lemma RightIdentity(m : M<A>)
ensures Bind(m,Return) == m;
// (m >>= f) >>= g = m >>= (x => f(x) >>= g)
lemma Associativity(m : M<A>, f:A -> M<B>, g: B -> M<C>)
requires forall a :: f.requires(a);
requires forall b :: g.requires(b);
ensures Bind(Bind(m,f),g) ==
Bind(m,x reads f.reads(x)
reads g.reads
requires f.requires(x)
requires forall b :: g.requires(b) => Bind(f(x),g));
}
module Identity refines Monad {
datatype M<A> = I(A)
function method Return<A>(x: A): M<A>
{ I(x) }
function method Bind<A,B>(m: M<A>, f:A -> M<B>):M<B>
{
var I(x) := m; f(x)
}
lemma LeftIdentity<A,B>(x : A, f : A -> M<B>)
{
}
lemma RightIdentity<A>(m : M<A>)
{
assert Bind(m,Return) == m;
}
lemma Associativity<A,B,C>(m : M<A>, f:A -> M<B>, g: B -> M<C>)
{
assert
Bind(Bind(m,f),g) ==
Bind(m,x reads f.reads(x)
reads g.reads
requires f.requires(x)
requires forall b :: g.requires(b) => Bind(f(x),g));
}
}
module Maybe refines Monad {
datatype M<A> = Just(A) | Nothing
function method Return<A>(x: A): M<A>
{ Just(x) }
function method Bind<A,B>(m: M<A>, f:A -> M<B>):M<B>
{
match m
case Nothing => Nothing
case Just(x) => f(x)
}
lemma LeftIdentity<A,B>(x : A, f : A -> M<B>)
{
}
lemma RightIdentity<A>(m : M<A>)
{
assert Bind(m,Return) == m;
}
lemma Associativity<A,B,C>(m : M<A>, f:A -> M<B>, g: B -> M<C>)
{
assert
Bind(Bind(m,f),g) ==
Bind(m,x reads f.reads(x)
reads g.reads
requires f.requires(x)
requires forall b :: g.requires(b) => Bind(f(x),g));
}
}
module List refines Monad {
datatype M<A> = Cons(hd: A,tl: M<A>) | Nil
function method Return<A>(x: A): M<A>
{ Cons(x,Nil) }
function method Concat(xs: M<A>, ys: M<A>): M<A>
{
match xs
case Nil => ys
case Cons(x,xs) => Cons(x,Concat(xs,ys))
}
function method Join(xss: M<M<A>>) : M<A>
{
match xss
case Nil => Nil
case Cons(xs,xss) => Concat(xs,Join(xss))
}
function method Map(xs: M<A>, f: A -> B):M<B>
reads f.reads;
requires forall a :: f.requires(a);
{
match xs
case Nil => Nil
case Cons(x,xs) => Cons(f(x),Map(xs,f))
}
function method Bind<A,B>(m: M<A>, f:A -> M<B>):M<B>
{
Join(Map(m,f))
}
lemma LeftIdentity<A,B>(x : A, f : A -> M<B>)
{
calc {
Bind(Return(x),f);
== Join(Map(Cons(x,Nil),f));
== Join(Cons(f(x),Nil));
== Concat(f(x),Nil);
== { assert forall xs : M<B> :: Concat(xs,Nil) == xs; }
f(x);
}
}
lemma RightIdentity<A>(m : M<A>)
{
match m
case Nil => calc {
Bind(Nil,Return);
== Join(Map(Nil,Return));
== Join(Nil);
== Nil;
== m;
}
case Cons(x,xs) =>
calc {
Bind(m,Return);
== Bind(Cons(x,xs),Return);
== Join(Map(Cons(x,xs),Return));
== Join(Cons(Return(x),Map(xs,Return)));
== Concat(Return(x),Join(Map(xs,Return)));
== { RightIdentity(xs); }
Concat(Return(x),xs);
== Concat(Cons(x,Nil),xs);
== Cons(x,xs);
== m;
}
}
lemma ConcatAssociativity<A>(xs : M<A>, ys : M<A>, zs: M<A>)
ensures Concat(Concat(xs,ys),zs) == Concat(xs,Concat(ys,zs));
{}
lemma BindMorphism(xs : M<A>, ys: M<A>, f : A -> M<B>)
requires forall a :: f.requires(a);
ensures Bind(Concat(xs,ys),f) == Concat(Bind(xs,f),Bind(ys,f));
{
match xs
case Nil => calc {
Bind(Concat(Nil,ys),f);
== Bind(ys,f);
== Concat(Nil,Bind(ys,f));
== Concat(Bind(Nil,f),Bind(ys,f));
}
case Cons(z,zs) => calc {
Bind(Concat(xs,ys),f);
== Bind(Concat(Cons(z,zs),ys),f);
== Concat(f(z),Bind(Concat(zs,ys),f));
== { BindMorphism(zs,ys,f); }
Concat(f(z),Concat(Bind(zs,f),Bind(ys,f)));
== { ConcatAssociativity(f(z),Bind(zs,f),Bind(ys,f)); }
Concat(Concat(f(z),Join(Map(zs,f))),Bind(ys,f));
== Concat(Bind(Cons(z,zs),f),Bind(ys,f));
== Concat(Bind(xs,f),Bind(ys,f));
}
}
lemma Associativity<A,B,C>(m : M<A>, f:A -> M<B>, g: B -> M<C>)
{
match m
case Nil => calc {
Bind(Bind(m,f),g);
== Bind(Bind(Nil,f),g);
== Bind(Nil,g);
== Nil;
== Bind(Nil,x reads f.reads(x)
reads g.reads
requires f.requires(x)
requires forall b :: g.requires(b) => Bind(f(x),g));
== Bind(m,x reads f.reads(x)
reads g.reads
requires f.requires(x)
requires forall b :: g.requires(b) => Bind(f(x),g));
}
case Cons(x,xs) => calc {
Bind(Bind(m,f),g);
== Bind(Bind(Cons(x,xs),f),g);
== Bind(Concat(f(x),Bind(xs,f)),g);
== { BindMorphism(f(x),Bind(xs,f),g); }
Concat(Bind(f(x),g),Bind(Bind(xs,f),g));
== { Associativity(xs,f,g); }
Concat(Bind(f(x),g),Join(Map(xs,y reads f.reads(y)
reads g.reads
requires f.requires(y)
requires forall b :: g.requires(b) => Bind(f(y),g))));
== Join(Cons(Bind(f(x),g),Map(xs,y reads f.reads(y)
reads g.reads
requires f.requires(y)
requires forall b :: g.requires(b) => Bind(f(y),g))));
== Join(Map(Cons(x,xs),y reads f.reads(y)
reads g.reads
requires f.requires(y)
requires forall b :: g.requires(b) => Bind(f(y),g)));
== Bind(Cons(x,xs),y reads f.reads(y)
reads g.reads
requires f.requires(y)
requires forall b :: g.requires(b) => Bind(f(y),g));
== Bind(m,x reads f.reads(x)
reads g.reads
requires f.requires(x)
requires forall b :: g.requires(b) => Bind(f(x),g));
}
}
}
|