summaryrefslogtreecommitdiff
path: root/Test/dafny4/Leq.dfy
blob: 0491dd00ccfbd4080f4755405c4fe8ee177e36b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// RUN: %dafny /rprint:"%t.rprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"

// Rustan Leino, 22 Sep 2015.
// This file considers two definitions of Leq on naturals+infinity.  One
// definition uses the least fixpoint, the other the greatest fixpoint.

// Nat represents natural numbers extended with infinity
codatatype Nat = Z | S(pred: Nat)

function Num(n: nat): Nat
{
  if n == 0 then Z else S(Num(n-1))
}

predicate IsFinite(a: Nat)
{
  exists m:nat :: a == Num(m)
}

copredicate IsInfinity(a: Nat)
{
  a.S? && IsInfinity(a.pred)
}

lemma NatCases(a: Nat)
  ensures IsFinite(a) || IsInfinity(a)
{
  if IsFinite(a) {
  } else {
    NatCasesAux(a);
  }
}
colemma NatCasesAux(a: Nat)
  requires !IsFinite(a)
  ensures IsInfinity(a)
{
  assert a != Num(0);
  if IsFinite(a.pred) {
    // going for a contradiction
    var m:nat :| a.pred == Num(m);
    assert a == Num(m+1);
    assert false;  // the case is absurd
  }
  NatCasesAux(a.pred);
}

// ----------- inductive semantics (more precisely, a least-fixpoint definition of Leq)

inductive predicate Leq(a: Nat, b: Nat)
{
  a == Z ||
  (a.S? && b.S? && Leq(a.pred, b.pred))
}

lemma LeqTheorem(a: Nat, b: Nat)
  ensures Leq(a, b) <==>
            exists m:nat :: a == Num(m) &&
                            (IsInfinity(b) || exists n:nat :: b == Num(n) && m <= n)
{
  if exists m:nat,n:nat :: a == Num(m) && b == Num(n) && m <= n {
    var m:nat,n:nat :| a == Num(m) && b == Num(n) && m <= n;
    Leq0_finite(m, n);
  }
  if (exists m:nat :: a == Num(m)) && IsInfinity(b) {
    var m:nat :| a == Num(m);
    Leq0_infinite(m, b);
  }
  if Leq(a, b) {
    var k:nat :| Leq#[k](a, b);
    var m, n := Leq1(k, a, b);
  }
}

lemma Leq0_finite(m: nat, n: nat)
  requires m <= n
  ensures Leq(Num(m), Num(n))
{
  // proof is automatic
}

lemma Leq0_infinite(m: nat, b: Nat)
  requires IsInfinity(b)
  ensures Leq(Num(m), b)
{
  // proof is automatic
}

lemma Leq1(k: nat, a: Nat, b: Nat) returns (m: nat, n: nat)
  requires Leq#[k](a, b)
  ensures a == Num(m)
  ensures IsInfinity(b) || (b == Num(n) && m <= n)
{
  if a == Z {
    m := 0;
    NatCases(b);
    if !IsInfinity(b) {
      n :| b == Num(n);
    }
  } else {
    assert a.S? && b.S? && Leq(a.pred, b.pred);
    m,n := Leq1(k-1, a.pred, b.pred);
    m, n := m + 1, n + 1;
  }
}

// ----------- co-inductive semantics (more precisely, a greatest-fixpoint definition of Leq)

copredicate CoLeq(a: Nat, b: Nat)
{
  a == Z ||
  (a.S? && b.S? && CoLeq(a.pred, b.pred))
}

lemma CoLeqTheorem(a: Nat, b: Nat)
  ensures CoLeq(a, b) <==>
            IsInfinity(b) ||
            exists m:nat,n:nat :: a == Num(m) && b == Num(n) && m <= n
{
  if IsInfinity(b) {
    CoLeq0_infinite(a, b);
  }
  if exists m:nat,n:nat :: a == Num(m) && b == Num(n) && m <= n {
    var m:nat,n:nat :| a == Num(m) && b == Num(n) && m <= n;
    CoLeq0_finite(m, n);
  }
  if CoLeq(a, b) {
    CoLeq1(a, b);
  }
}

lemma CoLeq0_finite(m: nat, n: nat)
  requires m <= n
  ensures CoLeq(Num(m), Num(n))
{
  // proof is automatic
}

colemma CoLeq0_infinite(a: Nat, b: Nat)
  requires IsInfinity(b)
  ensures CoLeq(a, b)
{
  // proof is automatic
}

lemma CoLeq1(a: Nat, b: Nat)
  requires CoLeq(a, b)
  ensures IsInfinity(b) || exists m:nat,n:nat :: a == Num(m) && b == Num(n) && m <= n
{
  var m,n := CoLeq1'(a, b);
}

lemma CoLeq1'(a: Nat, b: Nat) returns (m: nat, n: nat)
  requires CoLeq(a, b)
  ensures IsInfinity(b) || (a == Num(m) && b == Num(n) && m <= n)
{
  if !IsInfinity(b) {
    NatCases(b);
    n :| b == Num(n);
    m := CoLeq1Aux(a, n);
  }
}

lemma CoLeq1Aux(a: Nat, n: nat) returns (m: nat)
  requires CoLeq(a, Num(n))
  ensures a == Num(m) && m <= n
{
  if a == Z {
    m := 0;
  } else {
    m := CoLeq1Aux(a.pred, n-1);
    m := m + 1;
  }
}