summaryrefslogtreecommitdiff
path: root/Test/dafny4/CoqArt-InsertionSort.dfy
blob: efd01537b9bdb90621a91cca01659b39afb653ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// RUN: %dafny /compile:0 /dprint:"%t.dprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"

// Dafny transcription of the Coq development of insertion sort, as found in Coq'Art.

datatype List<T> = Nil | Cons(head: T, tail: List)

predicate sorted(l: List<int>)
{
  match l
  case Nil => true
  case Cons(x, rest) =>
    match rest
    case Nil => true
    case Cons(y, _) => x <= y && sorted(rest)
}

lemma example_sort_2357()
  ensures sorted(Cons(2, Cons(3, Cons(5, Cons(7, Nil)))));
{
}

lemma sorted_inv(z: int, l: List<int>)
  requires sorted(Cons(z, l));
  ensures sorted(l);
{
  match l {
    case Nil =>
    case Cons(_, _) =>
  }
}

// Number of occurrences of z in l
function nb_occ(z: int, l: List<int>): nat
{
  match l
  case Nil => 0
  case Cons(z', l') =>
    (if z == z' then 1 else 0) + nb_occ(z, l')
}

lemma example_nb_occ_0()
  ensures nb_occ(3, Cons(3, Cons(7, Cons(3, Nil)))) == 2;
{
}

lemma example_nb_occ_1()
  ensures nb_occ(36725, Cons(3, Cons(7, Cons(3, Nil)))) == 0;
{
}

// list l' is a permutation of list l
predicate equiv(l: List<int>, l': List<int>)
{
  forall z :: nb_occ(z, l) == nb_occ(z, l')
}

// equiv is an equivalence
lemma equiv_refl(l: List<int>)
  ensures equiv(l, l);
{
}

lemma equiv_sym(l: List<int>, l': List<int>)
  requires equiv(l, l');
  ensures equiv(l', l);
{
}

lemma equiv_trans(l: List<int>, l': List<int>, l'': List<int>)
  requires equiv(l, l') && equiv(l', l'');
  ensures equiv(l, l'');
{
}

lemma equiv_cons(z: int, l: List<int>, l': List<int>)
  requires equiv(l, l');
  ensures equiv(Cons(z, l), Cons(z, l'));
{
}

lemma equiv_perm(a: int, b: int, l: List<int>, l': List<int>)
  requires equiv(l, l');
  ensures equiv(Cons(a, Cons(b, l)), Cons(b, Cons(a, l')));
{
  var L, L' := Cons(a, Cons(b, l)), Cons(b, Cons(a, l'));
  forall z {
    calc {
      nb_occ(z, L);
      (if z == a && z == b then 2 else if z == a || z == b then 1 else 0) + nb_occ(z, l);
      (if z == a && z == b then 2 else if z == a || z == b then 1 else 0) + nb_occ(z, l');
      nb_occ(z, L');
    }
  }
}

// insertion of z into l at the right place (assuming l is sorted)
function method aux(z: int, l: List<int>): List<int>
{
  match l
  case Nil => Cons(z, Nil)
  case Cons(a, l') =>
    if z <= a then Cons(z, l) else Cons(a, aux(z, l'))
}

lemma example_aux_0()
  ensures aux(4, Cons(2, Cons(5, Nil))) == Cons(2, Cons(4, Cons(5, Nil)));
{
}

lemma example_aux_1()
  ensures aux(4, Cons(24, Cons(50, Nil))) == Cons(4, Cons(24, Cons(50, Nil)));
{
}

// the aux function seems to be a good tool for sorting...

lemma aux_equiv(l: List<int>, x: int)
  ensures equiv(Cons(x, l), aux(x, l));
{
  match l {
    case Nil =>
    case Cons(_, _) =>
  }
}

lemma aux_sorted(l: List<int>, x: int)
  requires sorted(l);
  ensures sorted(aux(x, l));
{
  match l {
    case Nil =>
    case Cons(_, l') =>
      match l' {
        case Nil =>
        case Cons(_, _) =>
      }
  }
}

// the sorting function
function sort(l: List<int>): List<int>
  ensures var l' := sort(l); equiv(l, l') && sorted(l');
{
  existence_proof(l);
  var l' :| equiv(l, l') && sorted(l'); l'
}

lemma existence_proof(l: List<int>)
  ensures exists l' :: equiv(l, l') && sorted(l');
{
  match l {
    case Nil =>
    case Cons(x, m) =>
      existence_proof(m);
      var m' :| equiv(m, m') && sorted(m');
      calc ==> {
        equiv(m, m') && sorted(m');
        equiv(l, Cons(x, m')) && sorted(m');
        { aux_equiv(m', x); }
        equiv(l, aux(x, m')) && sorted(m');
        { aux_sorted(m', x); }
        equiv(l, aux(x, m')) && sorted(aux(x, m'));
      }
  }
}

// to get a compilable function in Dafny
function method Sort(l: List<int>): List<int>
  ensures equiv(l, Sort(l)) && sorted(Sort(l));
{
  match l
  case Nil => l
  case Cons(x, m) =>
    var m' := Sort(m);
    assert equiv(l, Cons(x, m'));
    aux_equiv(m', x);
    aux_sorted(m', x);
    aux(x, m')
}

predicate p_aux_equiv(l: List<int>, x: int)
  ensures equiv(Cons(x, l), aux(x, l));
{
  aux_equiv(l, x);
  true
}

predicate p_aux_sorted(l: List<int>, x: int)
  requires sorted(l);
  ensures sorted(aux(x, l));
{
  aux_sorted(l, x);
  true
}