blob: ad6a97376660739c685fe641def0b0f62d99798f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
// RUN: %dafny /compile:0 /dprint:"%t.dprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"
// This is a Dafny adaptation of a Coq program by David Pichardie.
function IsEven(n: int): bool
requires 0 <= n;
ensures IsEven(n) ==> n == (n/2)+(n/2);
{
(n/2)*2 == n
}
function Square(n: int): int { n * n }
function pow2(n: int): int
requires 0 <= n;
ensures 0 <= pow2(n);
{
if n == 0 then
1
else if IsEven(n) then
Square(pow2(n / 2))
else
2*pow2(n-1)
}
function pow2_slow(n: int): int
requires 0 <= n;
{
if n == 0 then
1
else
2*pow2_slow(n-1)
}
lemma Lemma(n: int)
requires 0 <= n && IsEven(n);
ensures pow2_slow(n) == Square(pow2_slow(n/2));
{
if n != 0 {
Lemma(n-2);
}
}
lemma Theorem(n: int)
requires 0 <= n;
ensures pow2(n) == pow2_slow(n);
{
if n == 0 {
} else if (IsEven(n)) {
Lemma(n);
Theorem(n/2);
} else {
Theorem(n-1);
}
}
|