1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
// RUN: %dafny /compile:0 /dprint:"%t.dprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"
// Datatypes
datatype Bool = False | True
datatype Nat = Zero | Suc(Nat)
datatype List = Nil | Cons(Nat, List)
datatype Pair = Pair(Nat, Nat)
datatype PList = PNil | PCons(Pair, PList)
datatype Tree = Leaf | Node(Tree, Nat, Tree)
// Boolean functions
function not(b: Bool): Bool
{
match b
case False => True
case True => False
}
function and(a: Bool, b: Bool): Bool
{
if a == True && b == True then True else False
}
// Natural number functions
function add(x: Nat, y: Nat): Nat
{
match x
case Zero => y
case Suc(w) => Suc(add(w, y))
}
function minus(x: Nat, y: Nat): Nat
{
match x
case Zero => Zero
case Suc(a) => match y
case Zero => x
case Suc(b) => minus(a, b)
}
function eq(x: Nat, y: Nat): Bool
{
match x
case Zero => (match y
case Zero => True
case Suc(b) => False)
case Suc(a) => (match y
case Zero => False
case Suc(b) => eq(a, b))
}
function leq(x: Nat, y: Nat): Bool
{
match x
case Zero => True
case Suc(a) => match y
case Zero => False
case Suc(b) => leq(a, b)
}
function less(x: Nat, y: Nat): Bool
{
match y
case Zero => False
case Suc(b) => match x
case Zero => True
case Suc(a) => less(a, b)
}
function min(x: Nat, y: Nat): Nat
{
match x
case Zero => Zero
case Suc(a) => match y
case Zero => Zero
case Suc(b) => Suc(min(a, b))
}
function max(x: Nat, y: Nat): Nat
{
match x
case Zero => y
case Suc(a) => match y
case Zero => x
case Suc(b) => Suc(max(a, b))
}
// List functions
function concat(xs: List, ys: List): List
{
match xs
case Nil => ys
case Cons(x,tail) => Cons(x, concat(tail, ys))
}
function mem(x: Nat, xs: List): Bool
{
match xs
case Nil => False
case Cons(y, ys) => if x == y then True else mem(x, ys)
}
function delete(n: Nat, xs: List): List
{
match xs
case Nil => Nil
case Cons(y, ys) =>
if y == n then delete(n, ys) else Cons(y, delete(n, ys))
}
function drop(n: Nat, xs: List): List
{
match n
case Zero => xs
case Suc(m) => match xs
case Nil => Nil
case Cons(x, tail) => drop(m, tail)
}
function take(n: Nat, xs: List): List
{
match n
case Zero => Nil
case Suc(m) => match xs
case Nil => Nil
case Cons(x, tail) => Cons(x, take(m, tail))
}
function len(xs: List): Nat
{
match xs
case Nil => Zero
case Cons(y, ys) => Suc(len(ys))
}
function count(x: Nat, xs: List): Nat
{
match xs
case Nil => Zero
case Cons(y, ys) =>
if x == y then Suc(count(x, ys)) else count(x, ys)
}
function last(xs: List): Nat
{
match xs
case Nil => Zero
case Cons(y, ys) => match ys
case Nil => y
case Cons(z, zs) => last(ys)
}
function apply(f: FunctionValue, xs: List): List
{
match xs
case Nil => Nil
case Cons(y, ys) => Cons(Apply(f, y), apply(f, ys))
}
// In the following two functions, parameter "p" stands for a predicate: applying p and
// getting Zero means "false" and getting anything else means "true".
function takeWhileAlways(p: FunctionValue, xs: List): List
{
match xs
case Nil => Nil
case Cons(y, ys) =>
if Apply(p, y) != Zero
then Cons(y, takeWhileAlways(p, ys))
else Nil
}
function dropWhileAlways(p: FunctionValue, xs: List): List
{
match xs
case Nil => Nil
case Cons(y, ys) =>
if Apply(p, y) != Zero
then dropWhileAlways(p, ys)
else Cons(y, ys)
}
function filter(p: FunctionValue, xs: List): List
{
match xs
case Nil => Nil
case Cons(y, ys) =>
if Apply(p, y) != Zero
then Cons(y, filter(p, ys))
else filter(p, ys)
}
function insort(n: Nat, xs: List): List
{
match xs
case Nil => Cons(n, Nil)
case Cons(y, ys) =>
if leq(n, y) == True
then Cons(n, Cons(y, ys))
else Cons(y, insort(n, ys))
}
function ins(n: Nat, xs: List): List
{
match xs
case Nil => Cons(n, Nil)
case Cons(y, ys) =>
if less(n, y) == True
then Cons(n, Cons(y, ys))
else Cons(y, ins(n, ys))
}
function ins1(n: Nat, xs: List): List
{
match xs
case Nil => Cons(n, Nil)
case Cons(y, ys) =>
if n == y
then Cons(y, ys)
else Cons(y, ins1(n, ys))
}
function sort(xs: List): List
{
match xs
case Nil => Nil
case Cons(y, ys) => insort(y, sort(ys))
}
function reverse(xs: List): List
{
match xs
case Nil => Nil
case Cons(t, rest) => concat(reverse(rest), Cons(t, Nil))
}
// Pair list functions
function zip(a: List, b: List): PList
{
match a
case Nil => PNil
case Cons(x, xs) => match b
case Nil => PNil
case Cons(y, ys) => PCons(Pair.Pair(x, y), zip(xs, ys))
}
function zipConcat(x: Nat, xs: List, more: List): PList
{
match more
case Nil => PNil
case Cons(y, ys) => PCons(Pair.Pair(x, y), zip(xs, ys))
}
// Binary tree functions
function height(t: Tree): Nat
{
match t
case Leaf => Zero
case Node(l, x, r) => Suc(max(height(l), height(r)))
}
function mirror(t: Tree): Tree
{
match t
case Leaf => Leaf
case Node(l, x, r) => Node(mirror(r), x, mirror(l))
}
// Function parameters
// Dafny currently does not support passing functions as arguments. To simulate
// arbitrary functions, the following type and Apply function play the role of
// applying some prescribed function (here, a value of the type)
// to some argument.
type FunctionValue
function Apply(f: FunctionValue, x: Nat): Nat // this function is left uninterpreted
// The following functions stand for the constant "false" and "true" functions,
// respectively.
function AlwaysFalseFunction(): FunctionValue
ensures forall n :: Apply(AlwaysFalseFunction(), n) == Zero;
function AlwaysTrueFunction(): FunctionValue
ensures forall n :: Apply(AlwaysTrueFunction(), n) != Zero;
// -----------------------------------------------------------------------------------
// The theorems to be proved
// -----------------------------------------------------------------------------------
lemma P1()
ensures forall n, xs :: concat(take(n, xs), drop(n, xs)) == xs;
{
}
lemma P2()
ensures forall n, xs, ys :: add(count(n, xs), count(n, ys)) == count(n, concat(xs, ys));
{
}
lemma P3()
ensures forall n, xs, ys :: leq(count(n, xs), count(n, concat(xs, ys))) == True;
{
}
lemma P4()
ensures forall n, xs :: add(Suc(Zero), count(n, xs)) == count(n, Cons(n, xs));
{
}
lemma P5()
ensures forall n, xs, x ::
add(Suc(Zero), count(n, xs)) == count(n, Cons(x, xs))
==> n == x;
{
}
lemma P6()
ensures forall m, n :: minus(n, add(n, m)) == Zero;
{
}
lemma P7()
ensures forall m, n :: minus(add(n, m), n) == m;
{
}
lemma P8()
ensures forall k, m, n :: minus(add(k, m), add(k, n)) == minus(m, n);
{
}
lemma P9()
ensures forall i, j, k :: minus(minus(i, j), k) == minus(i, add(j, k));
{
}
lemma P10()
ensures forall m :: minus(m, m) == Zero;
{
}
lemma P11()
ensures forall xs :: drop(Zero, xs) == xs;
{
}
lemma P12()
ensures forall n, xs, f :: drop(n, apply(f, xs)) == apply(f, drop(n, xs));
{
}
lemma P13()
ensures forall n, x, xs :: drop(Suc(n), Cons(x, xs)) == drop(n, xs);
{
}
lemma P14()
ensures forall xs, ys, p :: filter(p, concat(xs, ys)) == concat(filter(p, xs), filter(p, ys));
{
}
lemma P15()
ensures forall x, xs :: len(ins(x, xs)) == Suc(len(xs));
{
}
lemma P16()
ensures forall x, xs :: xs == Nil ==> last(Cons(x, xs)) == x;
{
}
lemma P17()
ensures forall n :: leq(n, Zero) == True <==> n == Zero;
{
}
lemma P18()
ensures forall i, m :: less(i, Suc(add(i, m))) == True;
{
}
lemma P19()
ensures forall n, xs :: len(drop(n, xs)) == minus(len(xs), n);
{
}
lemma P20()
ensures forall xs :: len(sort(xs)) == len(xs);
{
// the proof of this theorem requires a lemma about "insort"
assert forall x, xs :: len(insort(x, xs)) == Suc(len(xs));
}
lemma P21()
ensures forall n, m :: leq(n, add(n, m)) == True;
{
}
lemma P22()
ensures forall a, b, c :: max(max(a, b), c) == max(a, max(b, c));
{
}
lemma P23()
ensures forall a, b :: max(a, b) == max(b, a);
{
}
lemma P24()
ensures forall a, b :: max(a, b) == a <==> leq(b, a) == True;
{
}
lemma P25()
ensures forall a, b :: max(a, b) == b <==> leq(a, b) == True;
{
}
lemma P26()
ensures forall x, xs, ys :: mem(x, xs) == True ==> mem(x, concat(xs, ys)) == True;
{
}
lemma P27()
ensures forall x, xs, ys :: mem(x, ys) == True ==> mem(x, concat(xs, ys)) == True;
{
}
lemma P28()
ensures forall x, xs :: mem(x, concat(xs, Cons(x, Nil))) == True;
{
}
lemma P29()
ensures forall x, xs :: mem(x, ins1(x, xs)) == True;
{
}
lemma P30()
ensures forall x, xs :: mem(x, ins(x, xs)) == True;
{
}
lemma P31()
ensures forall a, b, c :: min(min(a, b), c) == min(a, min(b, c));
{
}
lemma P32()
ensures forall a, b :: min(a, b) == min(b, a);
{
}
lemma P33()
ensures forall a, b :: min(a, b) == a <==> leq(a, b) == True;
{
}
lemma P34()
ensures forall a, b :: min(a, b) == b <==> leq(b, a) == True;
{
}
lemma P35()
ensures forall xs :: dropWhileAlways(AlwaysFalseFunction(), xs) == xs;
{
}
lemma P36()
ensures forall xs :: takeWhileAlways(AlwaysTrueFunction(), xs) == xs;
{
}
lemma P37()
ensures forall x, xs :: not(mem(x, delete(x, xs))) == True;
{
}
lemma P38()
ensures forall n, xs :: count(n, concat(xs, Cons(n, Nil))) == Suc(count(n, xs));
{
}
lemma P39()
ensures forall n, x, xs ::
add(count(n, Cons(x, Nil)), count(n, xs)) == count(n, Cons(x, xs));
{
}
lemma P40()
ensures forall xs :: take(Zero, xs) == Nil;
{
}
lemma P41()
ensures forall n, xs, f :: take(n, apply(f, xs)) == apply(f, take(n, xs));
{
}
lemma P42()
ensures forall n, x, xs :: take(Suc(n), Cons(x, xs)) == Cons(x, take(n, xs));
{
}
lemma P43(p: FunctionValue)
ensures forall xs :: concat(takeWhileAlways(p, xs), dropWhileAlways(p, xs)) == xs;
{
}
lemma P44()
ensures forall x, xs, ys :: zip(Cons(x, xs), ys) == zipConcat(x, xs, ys);
{
}
lemma P45()
ensures forall x, xs, y, ys ::
zip(Cons(x, xs), Cons(y, ys)) ==
PCons(Pair.Pair(x, y), zip(xs, ys));
{
}
lemma P46()
ensures forall ys :: zip(Nil, ys) == PNil;
{
}
lemma P47()
ensures forall a :: height(mirror(a)) == height(a);
{
// proving this theorem requires a previously proved lemma:
P23();
}
// ...
lemma P54()
ensures forall m, n :: minus(add(m, n), n) == m;
{
// the proof of this theorem follows from two lemmas:
assert forall m, n {:autotriggers false} :: minus(add(n, m), n) == m; // FIXME: Why does Autotriggers false make things verify?
assert forall m, n :: add(m, n) == add(n, m);
}
lemma P65()
ensures forall i, m :: less(i, Suc(add(m, i))) == True;
{
if (*) {
// the proof of this theorem follows from two lemmas:
assert forall i, m {:autotriggers false} :: less(i, Suc(add(i, m))) == True; // FIXME: Why does Autotriggers false make things verify?
assert forall m, n :: add(m, n) == add(n, m);
} else {
// a different way to prove it uses the following lemma:
assert forall x,y :: add(x, Suc(y)) == Suc(add(x,y));
}
}
lemma P67()
ensures forall m, n :: leq(n, add(m, n)) == True;
{
if (*) {
// the proof of this theorem follows from two lemmas:
assert forall m, n {:autotriggers false} :: leq(n, add(n, m)) == True; // FIXME: Why does Autotriggers false make things verify?
assert forall m, n :: add(m, n) == add(n, m);
} else {
// a different way to prove it uses the following lemma:
assert forall x,y :: add(x, Suc(y)) == Suc(add(x,y));
}
}
// ---------
// Here is a alternate way of writing down the proof obligations:
lemma P1_alt(n: Nat, xs: List)
ensures concat(take(n, xs), drop(n, xs)) == xs;
{
}
lemma P2_alt(n: Nat, xs: List, ys: List)
ensures add(count(n, xs), count(n, ys)) == count(n, (concat(xs, ys)));
{
}
// ---------
lemma Lemma_RevConcat(xs: List, ys: List)
ensures reverse(concat(xs, ys)) == concat(reverse(ys), reverse(xs));
{
match (xs) {
case Nil =>
assert forall ws :: concat(ws, Nil) == ws;
case Cons(t, rest) =>
assert forall a, b, c :: concat(a, concat(b, c)) == concat(concat(a, b), c);
}
}
lemma Theorem(xs: List)
ensures reverse(reverse(xs)) == xs;
{
match (xs) {
case Nil =>
case Cons(t, rest) =>
Lemma_RevConcat(reverse(rest), Cons(t, Nil));
}
}
|