1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
// BQueue.bpl
// A queue program specified in the style of dynamic frames.
// Rustan Leino, Michal Moskal, and Wolfram Schulte, 2007.
// ---------------------------------------------------------------
type ref;
const null: ref;
type Field x;
// this variable represents the heap; read its type as \forall \alpha. ref * Field \alpha --> \alpha
type HeapType = <x>[ref, Field x]x;
var H: HeapType;
// every object has an 'alloc' field, which says whether or not the object has been allocated
const unique alloc: Field bool;
// for simplicity, we say that every object has one field representing its abstract value and one
// field representing its footprint (aka frame aka data group).
const unique abstractValue: Field Seq;
const unique footprint: Field [ref]bool;
// ---------------------------------------------------------------
type T; // the type of the elements of the queue
const NullT: T; // some value of type T
// ---------------------------------------------------------------
// Queue:
const unique head: Field ref;
const unique tail: Field ref;
const unique mynodes: Field [ref]bool;
// Node:
const unique data: Field T;
const unique next: Field ref;
function ValidQueue(HeapType, ref) returns (bool);
axiom (forall h: HeapType, q: ref ::
{ ValidQueue(h, q) }
q != null && h[q,alloc] ==>
(ValidQueue(h, q) <==>
h[q,head] != null && h[h[q,head],alloc] &&
h[q,tail] != null && h[h[q,tail],alloc] &&
h[h[q,tail], next] == null &&
// The following line can be suppressed now that we have a ValidFootprint invariant
(forall o: ref :: { h[q,footprint][o] } o != null && h[q,footprint][o] ==> h[o,alloc]) &&
h[q,footprint][q] &&
h[q,mynodes][h[q,head]] && h[q,mynodes][h[q,tail]] &&
(forall n: ref :: { h[q,mynodes][n] }
h[q,mynodes][n] ==>
n != null && h[n,alloc] && ValidNode(h, n) &&
SubSet(h[n,footprint], h[q,footprint]) &&
!h[n,footprint][q] &&
(h[n,next] == null ==> n == h[q,tail])
) &&
(forall n: ref :: { h[n,next] }
h[q,mynodes][n] ==>
(h[n,next] != null ==> h[q,mynodes][h[n,next]])
) &&
h[q,abstractValue] == h[h[q,head],abstractValue]
));
// frame axiom for ValidQueue
axiom (forall h0: HeapType, h1: HeapType, n: ref ::
{ ValidQueue(h0,n), ValidQueue(h1,n) }
(forall<alpha> o: ref, f: Field alpha :: o != null && h0[o,alloc] && h0[n,footprint][o]
==> h0[o,f] == h1[o,f])
&&
(forall<alpha> o: ref, f: Field alpha :: o != null && h1[o,alloc] && h1[n,footprint][o]
==> h0[o,f] == h1[o,f])
==>
ValidQueue(h0,n) == ValidQueue(h1,n));
function ValidNode(HeapType, ref) returns (bool);
axiom (forall h: HeapType, n: ref ::
{ ValidNode(h, n) }
n != null && h[n,alloc] ==>
(ValidNode(h, n) <==>
// The following line can be suppressed now that we have a ValidFootprint invariant
(forall o: ref :: { h[n,footprint][o] } o != null && h[n,footprint][o] ==> h[o,alloc]) &&
h[n,footprint][n] &&
(h[n,next] != null ==>
h[h[n,next],alloc] &&
SubSet(h[h[n,next], footprint], h[n,footprint]) &&
!h[h[n,next], footprint][n]) &&
(h[n,next] == null ==> EqualSeq(h[n,abstractValue], EmptySeq)) &&
(h[n,next] != null ==> EqualSeq(h[n,abstractValue],
Append(Singleton(h[h[n,next],data]), h[h[n,next],abstractValue])))
));
// frame axiom for ValidNode
axiom (forall h0: HeapType, h1: HeapType, n: ref ::
{ ValidNode(h0,n), ValidNode(h1,n) }
(forall<alpha> o: ref, f: Field alpha :: o != null && h0[o,alloc] && h0[n,footprint][o]
==> h0[o,f] == h1[o,f])
&&
(forall<alpha> o: ref, f: Field alpha :: o != null && h1[o,alloc] && h1[n,footprint][o]
==> h0[o,f] == h1[o,f])
==>
ValidNode(h0,n) == ValidNode(h1,n));
// ---------------------------------------------------------------
procedure MakeQueue() returns (q: ref)
requires ValidFootprints(H);
modifies H;
ensures ValidFootprints(H);
ensures ModifiesOnlySet(old(H), H, EmptySet);
ensures q != null && H[q,alloc];
ensures AllNewSet(old(H), H[q,footprint]);
ensures ValidQueue(H, q);
ensures Length(H[q,abstractValue]) == 0;
{
var n: ref;
assume Fresh(H,q);
H[q,alloc] := true;
call n := MakeNode(NullT);
H[q,head] := n;
H[q,tail] := n;
H[q,mynodes] := SingletonSet(n);
H[q,footprint] := UnionSet(SingletonSet(q), H[n,footprint]);
H[q,abstractValue] := H[n,abstractValue];
}
procedure IsEmpty(q: ref) returns (isEmpty: bool)
requires ValidFootprints(H);
requires q != null && H[q,alloc] && ValidQueue(H, q);
ensures isEmpty <==> Length(H[q,abstractValue]) == 0;
{
isEmpty := H[q,head] == H[q,tail];
}
procedure Enqueue(q: ref, t: T)
requires ValidFootprints(H);
requires q != null && H[q,alloc] && ValidQueue(H, q);
modifies H;
ensures ValidFootprints(H);
ensures ModifiesOnlySet(old(H), H, old(H)[q,footprint]);
ensures DifferenceIsNew(old(H), old(H)[q,footprint], H[q,footprint]);
ensures ValidQueue(H, q);
ensures EqualSeq(H[q,abstractValue], Append(old(H)[q,abstractValue], Singleton(t)));
{
var n: ref;
call n := MakeNode(t);
// foreach m in q.mynodes { m.footprint := m.footprint U n.footprint }
call BulkUpdateFootprint(H[q,mynodes], H[n,footprint]);
H[q,footprint] := UnionSet(H[q,footprint], H[n,footprint]);
// foreach m in q.mynodes { m.abstractValue := Append(m.abstractValue, Singleton(t)) }
call BulkUpdateAbstractValue(H[q,mynodes], t);
H[q,abstractValue] := H[H[q,head],abstractValue];
H[q,mynodes] := UnionSet(H[q,mynodes], SingletonSet(n));
H[H[q,tail], next] := n;
H[q,tail] := n;
}
procedure BulkUpdateFootprint(targetSet: [ref]bool, delta: [ref]bool);
requires ValidFootprints(H);
modifies H;
ensures ValidFootprints(H);
ensures ModifiesOnlySetField(old(H), H, targetSet, footprint);
ensures (forall o: ref ::
o != null && old(H)[o,alloc] && targetSet[o]
==> H[o,footprint] == UnionSet(old(H)[o,footprint], delta));
procedure BulkUpdateAbstractValue(targetSet: [ref]bool, t: T);
requires ValidFootprints(H);
modifies H;
ensures ValidFootprints(H);
ensures ModifiesOnlySetField(old(H), H, targetSet, abstractValue);
ensures (forall o: ref ::
o != null && old(H)[o,alloc] && targetSet[o]
==> EqualSeq(H[o,abstractValue], Append(old(H)[o,abstractValue], Singleton(t))));
procedure Front(q: ref) returns (t: T)
requires ValidFootprints(H);
requires q != null && H[q,alloc] && ValidQueue(H, q);
requires 0 < Length(H[q,abstractValue]);
ensures t == Index(H[q,abstractValue], 0);
{
t := H[H[H[q,head], next], data];
}
procedure Dequeue(q: ref)
requires ValidFootprints(H);
requires q != null && H[q,alloc] && ValidQueue(H, q);
requires 0 < Length(H[q,abstractValue]);
modifies H;
ensures ValidFootprints(H);
ensures ModifiesOnlySet(old(H), H, old(H)[q,footprint]);
ensures DifferenceIsNew(old(H), old(H)[q,footprint], H[q,footprint]);
ensures ValidQueue(H, q);
ensures EqualSeq(H[q,abstractValue], Drop(old(H)[q,abstractValue], 1));
{
var n: ref;
n := H[H[q,head], next];
H[q,head] := n;
// we could also remove old(H)[q,head] from H[q,mynodes], and similar for the footprints
H[q,abstractValue] := H[n,abstractValue];
}
// --------------------------------------------------------------------------------
procedure MakeNode(t: T) returns (n: ref)
requires ValidFootprints(H);
modifies H;
ensures ValidFootprints(H);
ensures ModifiesOnlySet(old(H), H, EmptySet);
ensures n != null && H[n,alloc];
ensures AllNewSet(old(H), H[n,footprint]);
ensures ValidNode(H, n);
ensures H[n,data] == t && H[n,next] == null;
{
assume Fresh(H,n);
H[n,alloc] := true;
H[n,next] := null;
H[n,data] := t;
H[n,footprint] := SingletonSet(n);
H[n,abstractValue] := EmptySeq;
}
// --------------------------------------------------------------------------------
procedure Main(t: T, u: T, v: T)
requires ValidFootprints(H);
modifies H;
ensures ValidFootprints(H);
ensures ModifiesOnlySet(old(H), H, EmptySet);
{
var q0, q1: ref;
var w: T;
call q0 := MakeQueue();
call q1 := MakeQueue();
call Enqueue(q0, t);
call Enqueue(q0, u);
call Enqueue(q1, v);
assert Length(H[q0,abstractValue]) == 2;
call w := Front(q0);
assert w == t;
call Dequeue(q0);
call w := Front(q0);
assert w == u;
assert Length(H[q0,abstractValue]) == 1;
assert Length(H[q1,abstractValue]) == 1;
}
// --------------------------------------------------------------------------------
procedure Main2(t: T, u: T, v: T, q0: ref, q1: ref)
requires q0 != null && H[q0,alloc] && ValidQueue(H, q0);
requires q1 != null && H[q1,alloc] && ValidQueue(H, q1);
requires DisjointSet(H[q0,footprint], H[q1,footprint]);
requires Length(H[q0,abstractValue]) == 0;
requires ValidFootprints(H);
modifies H;
ensures ValidFootprints(H);
ensures ModifiesOnlySet(old(H), H, UnionSet(old(H)[q0,footprint], old(H)[q1,footprint]));
{
var w: T;
call Enqueue(q0, t);
call Enqueue(q0, u);
call Enqueue(q1, v);
assert Length(H[q0,abstractValue]) == 2;
call w := Front(q0);
assert w == t;
call Dequeue(q0);
call w := Front(q0);
assert w == u;
assert Length(H[q0,abstractValue]) == 1;
assert Length(H[q1,abstractValue]) == old(Length(H[q1,abstractValue])) + 1;
}
// ---------------------------------------------------------------
// Helpful predicates used in specs
function ModifiesOnlySet(oldHeap: HeapType, newHeap: HeapType, set: [ref]bool) returns (bool);
axiom (forall oldHeap: HeapType, newHeap: HeapType, set: [ref]bool ::
{ ModifiesOnlySet(oldHeap, newHeap, set) }
ModifiesOnlySet(oldHeap, newHeap, set) <==>
NoDeallocs(oldHeap, newHeap) &&
(forall<alpha> o: ref, f: Field alpha :: { newHeap[o,f] }
o != null && oldHeap[o,alloc] ==>
oldHeap[o,f] == newHeap[o,f] || set[o]));
function ModifiesOnlySetField<alpha>(oldHeap: HeapType, newHeap: HeapType,
set: [ref]bool, field: Field alpha) returns (bool);
axiom (forall<alpha> oldHeap: HeapType, newHeap: HeapType, set: [ref]bool, field: Field alpha ::
{ ModifiesOnlySetField(oldHeap, newHeap, set, field) }
ModifiesOnlySetField(oldHeap, newHeap, set, field) <==>
NoDeallocs(oldHeap, newHeap) &&
(forall<beta> o: ref, f: Field beta :: { newHeap[o,f] }
o != null && oldHeap[o,alloc] ==>
oldHeap[o,f] == newHeap[o,f] || (set[o] && f == field)));
function NoDeallocs(oldHeap: HeapType, newHeap: HeapType) returns (bool);
axiom (forall oldHeap: HeapType, newHeap: HeapType ::
{ NoDeallocs(oldHeap, newHeap) }
NoDeallocs(oldHeap, newHeap) <==>
(forall o: ref :: { newHeap[o,alloc] }
o != null && oldHeap[o,alloc] ==> newHeap[o,alloc]));
function AllNewSet(oldHeap: HeapType, set: [ref]bool) returns (bool);
axiom (forall oldHeap: HeapType, set: [ref]bool ::
{ AllNewSet(oldHeap, set) }
AllNewSet(oldHeap, set) <==>
(forall o: ref :: { oldHeap[o,alloc] }
o != null && set[o] ==> !oldHeap[o,alloc]));
function DifferenceIsNew(oldHeap: HeapType, oldSet: [ref]bool, newSet: [ref]bool) returns (bool);
axiom (forall oldHeap: HeapType, oldSet: [ref]bool, newSet: [ref]bool ::
{ DifferenceIsNew(oldHeap, oldSet, newSet) }
DifferenceIsNew(oldHeap, oldSet, newSet) <==>
(forall o: ref :: { oldHeap[o,alloc] }
o != null && !oldSet[o] && newSet[o] ==> !oldHeap[o,alloc]));
function ValidFootprints(h: HeapType) returns (bool);
axiom (forall h: HeapType ::
{ ValidFootprints(h) }
ValidFootprints(h) <==>
(forall o: ref, r: ref :: { h[o,footprint][r] }
o != null && h[o,alloc] && r != null && h[o,footprint][r] ==> h[r,alloc]));
function Fresh(h: HeapType, o: ref) returns (bool);
axiom (forall h: HeapType, o: ref ::
{ Fresh(h,o) }
Fresh(h,o) <==>
o != null && !h[o,alloc] && h[o,footprint] == SingletonSet(o));
// ---------------------------------------------------------------
const EmptySet: [ref]bool;
axiom (forall o: ref :: { EmptySet[o] } !EmptySet[o]);
function SingletonSet(ref) returns ([ref]bool);
axiom (forall r: ref :: { SingletonSet(r) } SingletonSet(r)[r]);
axiom (forall r: ref, o: ref :: { SingletonSet(r)[o] } SingletonSet(r)[o] <==> r == o);
function UnionSet([ref]bool, [ref]bool) returns ([ref]bool);
axiom (forall a: [ref]bool, b: [ref]bool, o: ref :: { UnionSet(a,b)[o] }
UnionSet(a,b)[o] <==> a[o] || b[o]);
function SubSet([ref]bool, [ref]bool) returns (bool);
axiom(forall a: [ref]bool, b: [ref]bool :: { SubSet(a,b) }
SubSet(a,b) <==> (forall o: ref :: {a[o]} {b[o]} a[o] ==> b[o]));
function EqualSet([ref]bool, [ref]bool) returns (bool);
axiom(forall a: [ref]bool, b: [ref]bool :: { EqualSet(a,b) }
EqualSet(a,b) <==> (forall o: ref :: {a[o]} {b[o]} a[o] <==> b[o]));
function DisjointSet([ref]bool, [ref]bool) returns (bool);
axiom (forall a: [ref]bool, b: [ref]bool :: { DisjointSet(a,b) }
DisjointSet(a,b) <==> (forall o: ref :: {a[o]} {b[o]} !a[o] || !b[o]));
// ---------------------------------------------------------------
// Sequence of T
type Seq;
function Length(Seq) returns (int);
axiom (forall s: Seq :: { Length(s) } 0 <= Length(s));
const EmptySeq: Seq;
axiom Length(EmptySeq) == 0;
axiom (forall s: Seq :: { Length(s) } Length(s) == 0 ==> s == EmptySeq);
function Singleton(T) returns (Seq);
axiom (forall t: T :: { Length(Singleton(t)) } Length(Singleton(t)) == 1);
function Append(Seq, Seq) returns (Seq);
axiom (forall s0: Seq, s1: Seq :: { Length(Append(s0,s1)) }
Length(Append(s0,s1)) == Length(s0) + Length(s1));
function Index(Seq, int) returns (T);
axiom (forall t: T :: { Index(Singleton(t), 0) } Index(Singleton(t), 0) == t);
axiom (forall s0: Seq, s1: Seq, n: int :: { Index(Append(s0,s1), n) }
(n < Length(s0) ==> Index(Append(s0,s1), n) == Index(s0, n)) &&
(Length(s0) <= n ==> Index(Append(s0,s1), n) == Index(s1, n - Length(s0))));
function EqualSeq(Seq, Seq) returns (bool);
axiom (forall s0: Seq, s1: Seq :: { EqualSeq(s0,s1) }
EqualSeq(s0,s1) <==>
Length(s0) == Length(s1) &&
(forall j: int :: { Index(s0,j) } { Index(s1,j) }
0 <= j && j < Length(s0) ==> Index(s0,j) == Index(s1,j)));
function Take(s: Seq, howMany: int) returns (Seq);
axiom (forall s: Seq, n: int :: { Length(Take(s,n)) }
0 <= n ==>
(n <= Length(s) ==> Length(Take(s,n)) == n) &&
(Length(s) < n ==> Length(Take(s,n)) == Length(s)));
axiom (forall s: Seq, n: int, j: int :: { Index(Take(s,n), j) }
0 <= j && j < n && j < Length(s) ==>
Index(Take(s,n), j) == Index(s, j));
function Drop(s: Seq, howMany: int) returns (Seq);
axiom (forall s: Seq, n: int :: { Length(Drop(s,n)) }
0 <= n ==>
(n <= Length(s) ==> Length(Drop(s,n)) == Length(s) - n) &&
(Length(s) < n ==> Length(Drop(s,n)) == 0));
axiom (forall s: Seq, n: int, j: int :: { Index(Drop(s,n), j) }
0 <= n && 0 <= j && j < Length(s)-n ==>
Index(Drop(s,n), j) == Index(s, j+n));
// ---------------------------------------------------------------
|