1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
class Termination {
method A(N: int)
requires 0 <= N;
{
var i := 0;
while (i < N)
invariant i <= N;
// this will be heuristically inferred: decreases N - i;
{
i := i + 1;
}
}
method B(N: int)
requires 0 <= N;
{
var i := N;
while (true)
invariant 0 <= i;
decreases i;
{
i := i - 1;
if (!(0 <= i)) {
break;
}
}
assert i == -1;
}
method Lex() {
call x := Update();
call y := Update();
while (!(x == 0 && y == 0))
invariant 0 <= x && 0 <= y;
decreases x, y;
{
if (0 < y) {
y := y - 1;
} else {
x := x - 1;
call y := Update();
}
}
}
method Update() returns (r: int)
ensures 0 <= r;
{
r := 8;
}
method M() {
var b := true;
var i := 500;
var r := new Termination;
var s := {12, 200};
var q := [5, 8, 13];
while (true)
decreases b, i, r;
// invariant b ==> 0 <= i;
decreases s, q;
{
if (12 in s) {
s := s - {12};
} else if (b) {
b := !b;
i := i + 1;
} else if (20 <= i) {
i := i - 20;
} else if (r != null) {
r := null;
} else if (|q| != 0) {
q := q[1..];
} else {
break;
}
}
}
method Q<T>(list: List<T>) {
var l := list;
while (l != #List.Nil)
decreases l;
{
call x, l := Traverse(l);
}
}
method Traverse<T>(a: List<T>) returns (val: T, b: List<T>);
requires a != #List.Nil;
ensures a == #List.Cons(val, b);
}
datatype List<T> {
Nil;
Cons(T, List<T>);
}
method FailureToProveTermination0(N: int)
{
var n := N;
while (n < 100) { // error: may not terminate
n := n - 1;
}
}
method FailureToProveTermination1(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100) // error: cannot prove termination from the heuristically chosen termination metric
{
n := n + 1;
}
}
method FailureToProveTermination2(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100) // error: cannot prove termination from the given (bad) termination metric
decreases n - x;
{
n := n + 1;
}
}
method FailureToProveTermination3(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100)
decreases 100 - n;
{
n := n + 1;
}
}
method FailureToProveTermination4(x: int, y: int, N: int)
{
var n := N;
while (n < 100 && x < y)
decreases 100 - n;
{
n := n + 1;
}
}
method FailureToProveTermination5(b: bool, N: int)
{
var n := N;
while (b && n < 100) // here, the heuristics are good enough to prove termination
{
n := n + 1;
}
}
|