summaryrefslogtreecommitdiff
path: root/Test/dafny0/SplitExpr.dfy
blob: 3e67db5883929e558a9ff0c46213c10f2afc09f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
class UnboundedStack<T> {
  var top: Node<T>;
  ghost var footprint: set<object>;
  ghost var content: seq<T>; 

  function IsUnboundedStack(): bool
    reads {this} + footprint;
  {
    this in footprint &&
    (top == null  ==>  content == []) &&
    (top != null  ==>  top in footprint && top.footprint <= footprint &&
                       top.prev == null && content == top.content && top.Valid())
  }

  function IsEmpty(): bool
    reads {this};
  { content == [] }

  method Pop() returns (result: T)
    requires IsUnboundedStack() && !IsEmpty();
    modifies footprint;
    ensures IsUnboundedStack() && content == old(content)[1..];
  {
    result := top.val;
    // The following assert does the trick, because it gets inlined and thus
    // exposes top.next.Valid() (if top.next != null):
    footprint := footprint - top.footprint;  top := top.next;
    // In a previous version of the implementation of the SplitExpr transformation, the
    // following assert did not have the intended effect of being used as a lemma:
    assert top != null ==> top.Valid();
    if (top != null) {
      footprint := footprint + top.footprint;  top.prev := null;
    }
    content := content[1..];
} }

class Node<T> {
  var val: T;  
  var next: Node<T>;
  var prev: Node<T>;
  var footprint: set<Node<T>>;
  var content: seq<T>;

  function Valid(): bool
    reads this, footprint;
  {
    this in footprint && !(null in footprint) &&
    (next == null  ==>  content == [val])  &&
    (next != null  ==>  next in footprint &&
                        next.footprint < footprint &&
                        !(this in next.footprint) &&
                        next.prev == this &&
                        content == [val] + next.content &&
                        next.Valid())
  }
}

// ---------------------------------------------------------------------------------------
// The following examples requires that quantifiers are boosted (that is, #2) when checked
// versus not boosted (#1) when assumed.

function F(x: nat): int
{
  if x == 0 then 0 else 1 + F(x-1)
}

method M(N: nat)
{
  var i := 0;
  while (i < N)
    invariant forall x {:induction false} :: 0 <= x <= i ==> F(x) == x;
  {
    i := i + 1;
  }
}