summaryrefslogtreecommitdiff
path: root/Test/dafny0/SmallTests.dfy
blob: ba009b833f197724e3dab03edf25bb1224c0a591 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// RUN: %dafny /compile:0 /print:"%t.print" /dprint:"%t.dprint.dfy" /autoTriggers:1 "%s" > "%t"
// RUN: %dafny /noVerify /compile:0 "%t.dprint.dfy" >> "%t"
// RUN: %diff "%s.expect" "%t"

class Node {
  var next: Node;

  function IsList(r: set<Node>): bool
    reads r;
  {
    this in r &&
    (next != null  ==>  next.IsList(r - {this}))
  }

  method Test(n: Node, nodes: set<Node>)
  {
    assume nodes == nodes - {n};
    // the next line needs the Set extensionality axiom, the antecedent of
    // which is supplied by the previous line
    assert IsList(nodes) == IsList(nodes - {n});
  }

  method Create()
    modifies this;
  {
    next := null;
    var tmp: Node;
    tmp := new Node;
    assert tmp != this;  // was once a bug in the Dafny checker
  }

  method SequenceUpdateOutOfBounds(s: seq<set<int>>, j: int) returns (t: seq<set<int>>)
  {
    t := s[j := {}];  // error: j is possibly out of bounds
  }

  method Sequence(s: seq<bool>, j: int, b: bool, c: bool) returns (t: seq<bool>)
    requires 10 <= |s|
    requires 8 <= j < |s|
    ensures |t| == |s|
    ensures t[8] == s[8] || t[9] == s[9]
    ensures t[j] == b
  {
    if (c) {
      t := s[j := b];
    } else {
      t := s[..j] + [b] + s[j+1..];
    }
  }

  method Max0(x: int, y: int) returns (r: int)
    ensures r == (if x < y then y else x)
  {
    if (x < y) { r := y; } else { r := x; }
  }

  method Max1(x: int, y: int) returns (r: int)
    ensures r == x || r == y
    ensures x <= r && y <= r
  {
    r := if x < y then y else x;
  }

  function PoorlyDefined(x: int): int
    requires if next == null then 5/x < 20 else true;  // error: ill-defined then branch
    requires if next == null then true else 0 <= 5/x;  // error: ill-defined then branch
    requires if next.next == null then true else true;  // error: ill-defined guard
    requires 10/x != 8;  // this is well-defined, because we get here only if x is non-0
    reads this, next;
  {
    12
  }
}

// ------------------ modifies clause tests ------------------------

class Modifies {
  var x: int;
  var next: Modifies;

  method A(p: Modifies)
    modifies this, p;
  {
    x := x + 1;
    while (p != null && p.x < 75)
      decreases 75 - p.x;  // error: not defined (null deref) at top of each iteration (there's good reason
    {                      // to insist on this; for example, the decrement check could not be performed
      p.x := p.x + 1;      // at the end of the loop body if p were set to null in the loop body)
    }
  }

  method Aprime(p: Modifies)
    modifies this, p;
  {
    x := x + 1;
    while (p != null && p.x < 75)
      decreases if p != null then 75 - p.x else 0;  // given explicitly (but see Adoubleprime below)
    {
      p.x := p.x + 1;
    }
  }

  method Adoubleprime(p: Modifies)
    modifies this, p;
  {
    x := x + 1;
    while (p != null && p.x < 75)  // here, the decreases clause is heuristically inferred (to be the
    {                              // same as the one in Aprime above)
      p.x := p.x + 1;
    }
  }

  method B(p: Modifies)
    modifies this;
  {
    A(this);
    if (p == this) {
      p.A(p);
    }
    A(p);  // error: may violate modifies clause
  }

  method C(b: bool)
    modifies this;
    ensures !b ==> x == old(x) && next == old(next)
  {
  }

  method D(p: Modifies, y: int)
    requires p != null
  {
    if (y == 3) {
      p.C(true);  // error: may violate modifies clause
    } else {
      p.C(false);  // error: may violation modifies clause (the check is done without regard
                        // for the postcondition, which also makes sense, since there may, in
                        // principle, be other fields of the object that are not constrained by the
                        // postcondition)
    }
  }

  method E()
    modifies this;
  {
    A(null);  // allowed
  }

  method F(s: set<Modifies>)
    modifies s;
  {
    forall m | m in s && m != null && 2 <= m.x {
      m.x := m.x + 1;
    }
    if (this in s) {
      x := 2 * x;
    }
  }

  method G(s: set<Modifies>)
    modifies this;
  {
    var m := 3;  // this is a different m

    forall m | m in s && m == this {
      m.x := m.x + 1;
    }
    if (s <= {this}) {
      forall (m | m in s) {
        m.x := m.x + 1;
      }
      F(s);
    }
    forall (m | m in s) ensures true; { assert m == null || m.x < m.x + 10; }
    forall (m | m != null && m in s) {
      m.x := m.x + 1;  // error: may violate modifies clause
    }
  }

  method SetConstruction() {
    var s := {1};
    assert s != {};
    if (*) {
      assert s != {0,1};
    } else {
      assert s != {1,0};
    }
  }
}

// ------------------ allocated --------------------------------------------------

class AllocatedTests {
  method M(r: AllocatedTests, k: Node, S: set<Node>, d: Lindgren)
  {
    var n := new Node;
    var t := S + {n};

    if (*) {
      assert !fresh(n);  // error: n was not allocated in the initial state
    } else {
      assert fresh(n);  // correct
    }

    var U := {k,n};
    if (*) {
      assert !fresh(U);  // error: n was not allocated initially
    } else {
      assert fresh(U);  // error: k was not allocated initially
    }

    var Q := [k,n];
    if (*) {
      assert !fresh(Q);  // error: n was not allocated initially
    } else {
      assert fresh(Q);  // error: k was not allocated initially
    }
  }
}

datatype Lindgren =
  Pippi(Node) |
  Longstocking(seq<object>, Lindgren) |
  HerrNilsson

// --------------------------------------------------

class InitCalls {
  var z: int;
  var p: InitCalls;

  method Init(y: int)
    modifies this;
    ensures z == y
  {
    z := y;
  }

  method InitFromReference(q: InitCalls)
    requires q != null && 15 <= q.z
    modifies this;
    ensures p == q
  {
    p := q;
  }

  method TestDriver()
  {
    var c: InitCalls;
    c := new InitCalls.Init(15);
    var d := new InitCalls.Init(17);
    var e: InitCalls := new InitCalls.Init(18);
    var f: object := new InitCalls.Init(19);
    assert c.z + d.z + e.z == 50;
    // poor man's type cast:
    ghost var g: InitCalls;
    assert f == g ==> g.z == 19;

    // test that the call is done before the assignment to the LHS
    var r := c;
    r := new InitCalls.InitFromReference(r);  // fine, since r.z==15
    r := new InitCalls.InitFromReference(r);  // error, since r.z is unknown
  }
}

// --------------- some tests with quantifiers and ranges ----------------------

method QuantifierRange0<T>(a: seq<T>, x: T, y: T, N: int)
  requires 0 <= N <= |a|
  requires forall k | 0 <= k < N :: a[k] != x
  requires exists k | 0 <= k < N :: a[k] == y
  ensures forall k :: 0 <= k < N ==> a[k] != x;  // same as the precondition, but using ==> instead of |
  ensures exists k :: 0 <= k < N && a[k] == y;  // same as the precondition, but using && instead of |
{
  assert x != y;
}

method QuantifierRange1<T>(a: seq<T>, x: T, y: T, N: int)
  requires 0 <= N <= |a|
  requires forall k :: 0 <= k < N ==> a[k] != x
  requires exists k :: 0 <= k < N && a[k] == y
  ensures forall k | 0 <= k < N :: a[k] != x;  // same as the precondition, but using | instead of ==>
  ensures exists k | 0 <= k < N :: a[k] == y;  // same as the precondition, but using | instead of &&
{
  assert x != y;
}

method QuantifierRange2<T(==)>(a: seq<T>, x: T, y: T, N: int)
  requires 0 <= N <= |a|
  requires exists k | 0 <= k < N :: a[k] == y
  ensures forall k | 0 <= k < N :: a[k] == y;  // error
{
  assert N != 0;
  if (N == 1) {
    assert forall k {:nowarn} | a[if 0 <= k < N then k else 0] != y :: k < 0 || N <= k;  // in this case, the precondition holds trivially
  }
  if (forall k | 0 <= k < N :: a[k] == x) {
    assert x == y;
  }
}

// ----------------------- tests that involve sequences of boxes --------

ghost method M(zeros: seq<bool>, Z: bool)
  requires 1 <= |zeros| && Z == false
  requires forall k :: 0 <= k < |zeros| ==> zeros[k] == Z
{
  var x := [Z];
  assert zeros[0..1] == [Z];
}

class SomeType
{
  var x: int;
  method DoIt(stack: seq<SomeType>)
    requires null !in stack
    modifies stack;
  {
    forall n | n in stack {
      n.x := 10;
    }
  }
}

// ----------------------- tests of some theory axioms --------

method TestSequences0()
{
  var s := [0, 2, 4];
  if (*) {
    assert 4 in s;
    assert 0 in s;
    assert 1 !in s;
  } else {
    assert 2 in s;
    assert 0 in s;
    assert exists n :: n in s && -3 <= n < 2;
  }
  assert 7 in s;  // error
}

// ----------------------- test attributes on methods and constructors --------

method test0()
{
  assert false;  // error
}

method {:verify false} test1()
{
  assert false;
}

function test2() : bool
{
  !test2()  // error
}

function {:verify false} test3() : bool
{
  !test3()
}

class Test {

  method test0()
  {
    assert false;  // error
  }

  method {:verify false} test1()
  {
    assert false;
  }

  constructor init0()
  {
    assert false;  // error
  }

  constructor {:verify false} init1()
  {
    assert false;
  }

  function test2() : bool
  {
    !test2()  // error
  }

  function {:verify false} test3() : bool
  {
    !test3()
  }

}

// ------ an if-then-else regression test

function F(b: bool): int
  // The if-then-else in the following line was once translated incorrectly,
  // incorrectly causing the postcondition to verify
  ensures if b then F(b) == 5 else F(b) == 6
{
  5
}

// ----------------------- test attributes on method specification constructs (assert, ensures, modifies, decreases, invariant) --------

class AttributeTests {
  var f: int;

  method m0()
  {

  }

  method m1() returns (r: bool)
  {
    r := false;
  }

  function method m2() : bool
  {
    true
  }

  constructor C()
  {

  }

  method testAttributes0() returns (r: AttributeTests)
    ensures {:boolAttr true} true
    ensures {:boolAttr false} true
    ensures {:intAttr 0} true
    ensures {:intAttr 1} true
    modifies {:boolAttr true} this`f;
    modifies {:boolAttr false} this`f;
    modifies {:intAttr 0} this`f;
    modifies {:intAttr 1} this`f;
    modifies {:boolAttr true} this;
    modifies {:boolAttr false} this;
    modifies {:intAttr 0} this;
    modifies {:intAttr 1} this;
    decreases {:boolAttr true} f;
    decreases {:boolAttr false} f;
    decreases {:intAttr 0} f;
    decreases {:intAttr 1} f;
  {
    assert {:boolAttr true} true;
    assert {:boolAttr false} true;
    assert {:intAttr 0} true;
    assert {:intAttr 1} true;

    while (false)
      invariant {:boolAttr true} true;
      invariant {:boolAttr false} true;
      invariant {:intAttr 0} true;
      invariant {:intAttr 1} true;
      modifies {:boolAttr true} this`f;
      modifies {:boolAttr false} this`f;
      modifies {:intAttr 0} this`f;
      modifies {:intAttr 1} this`f;
      decreases {:boolAttr true} f;
      decreases {:boolAttr false} f;
      decreases {:intAttr 0} f;
      decreases {:intAttr 1} f;
    {

    }

    m0() {:boolAttr true};
    m0() {:boolAttr false};
    m0() {:intAttr 0};
    m0() {:intAttr 1};

    this.m0() {:boolAttr true};
    this.m0() {:boolAttr false};
    this.m0() {:intAttr 0};
    this.m0() {:intAttr 1};

    var b1 := m1() {:boolAttr true};
    b1 := m1() {:boolAttr false};
    b1 := m1() {:intAttr 0};
    b1 := m1() {:intAttr 1};

    var b2, b2' := m2() {:boolAttr true}, m2() {:boolAttr true};
    b2, b2' := m2() {:boolAttr false}, m2() {:boolAttr false};
    b2, b2' := m2() {:intAttr 0}, m2() {:boolAttr false};
    b2, b2' := m2() {:intAttr 1}, m2() {:boolAttr false};

    var c := new AttributeTests.C() {:boolAttr true};
    c := new AttributeTests.C() {:boolAttr false};
    c := new AttributeTests.C() {:intAttr 0};
    c := new AttributeTests.C() {:intAttr 1};

    if (*) {
      return new AttributeTests.C() {:boolAttr true};
    } else {
      return new AttributeTests.C() {:intAttr 0};
    }

    // forall statements resolve their attributes once the bound variables have been
    // added to the scope
    var y: bool, x: real;
    var aa := new real[120];
    forall y: int, x, z {:trgr x == y} {:tri z == z} | x < y  // the range will infer the type of x
      ensures z && 0 <= x < aa.Length ==> aa[x] == 0.0;  // ensures clause will infer type of z
    {
    }
  }
}

// ----------------------- test attributes on variable declarations --------

method TestAttributesVarDecls()
{
  var {:foo foo} foo := null;
  var {:bar bar} bar := 0;
  var {:foo foobar} {:bar foobar} foobar : set<int> := {};
  var {:baz baz && foobaz} baz, {:foobaz foobaz != baz} foobaz := true, false;
}

// ----------------------- Pretty printing of !(!expr) --------

method TestNotNot()
{
  assert !(!true);  // Shouldn't pretty print as "!!true".

  assert !(true == false);

  assert !(if true then false else false);

  assert !if true then false else false;

  assert !if !(!true) then false else false;

  assert true == !(!true);
}

// ----------------------- Assign-such-that statements -------

method AssignSuchThat0(a: int, b: int) returns (x: int, y: int)
  ensures x == a && y == b
{
  if (*) {
    x, y :| a <= x < a + 1 && b + a <= y + a && y <= b;
  } else {
    var xx, yy :| a <= xx < a + 1 && b + a <= yy + a && yy <= b;
    x, y := xx, yy;
  }
}

method AssignSuchThat1(a: int, b: int) returns (x: int, y: int)
{
  ghost var k :| assume 0 <= k < a - b;  // this acts like an 'assume 0 < a - b;'
  assert b < a;
  k :| k == old(2*k);  // note, the 'old' has no effect on local variables like k
  assert k == 0;
  var S := {2, 4, 7};
  var T :| T <= S;
  assert 3 !in T;
  assert T == {};  // error: T may be larger
}

method AssignSuchThat2(i: int, j: int, ghost S: set<Node>)
  modifies S;
{
  var n := new Node;
  var a := new int[25];
  var t;
  if (0 <= i < j < 25) {
    a[i], t, a[j], n.next, n :| assume true;
  }
  if (n != null && n.next != null) {
    assume n in S && n.next in S;
    n.next.next, n.next :| assume n != null && n.next != null && n.next.next == n.next;  // error: n.next may equal n (thus aliasing n.next.next and n.next)
  } else if (0 <= i < 25 && 0 <= j < 25) {
    t, a[i], a[j] :| assume t < a[i] < a[j];  // error: i may equal j (thus aliasing a[i] and a[j])
  }
}

method AssignSuchThat3()
{
  var n := new Node;
  n, n.next :| assume n.next == n;  // error: RHS is not well defined (RHS is evaluated after the havocking of the LHS)
}

method AssignSuchThat4()
{
  var n := new Node;
  n, n.next :| assume n != null && n.next == n;  // that's the ticket
}

method AssignSuchThat5()
{
  var k := new Node;
  ghost var n: Node :| fresh(n);  // fine
  assert false;  // error
}

method AssignSuchThat6()
{
  var n: Node;
  n :| assume n != null && fresh(n);  // there is no non-null fresh object, so this amounts to 'assume false;'
  assert false;  // no problemo
}

method AssignSuchThat7<T>(A: set<T>, x: T) {
  var B :| B <= A;
  assert x in B ==> x in A;
}

method AssignSuchThat8(n: int) returns (x: int, y: Lindgren) {
  x :| x in {1};
  x :| x in {3, 7, 11};
  x :| x in {n + 12};
  y :| y in {HerrNilsson};
  y :| y == y;
  x :| x in multiset{3, 3, 2, 3};
  x :| x in map[5 := 10, 6 := 12];
  x :| x in [n, n, 2];
  x :| x in [];  // error
}

codatatype QuiteFinite = QQA | QQB | QQC

method AssignSuchThat9() returns (q: QuiteFinite)
{
  q :| q != QQA && q != QQC;
}

// ----------- let-such-that expressions ------------------------

function method LetSuchThat_P(x: int): bool

method LetSuchThat0(ghost g: int)
  requires LetSuchThat_P(g)
{
  var t :| LetSuchThat_P(t);  // assign-such-that statement
  ghost var u := var q :| LetSuchThat_P(q); q + 1;  // let-such-that expression
  if (forall a,b | LetSuchThat_P(a) && LetSuchThat_P(b) :: a == b) {
    assert t < u;
  }
  assert LetSuchThat_P(u-1);  // yes
  assert LetSuchThat_P(u);  // error: no reason to expect this to hold
}

method LetSuchThat1<T>(A: set<T>)
{
  ghost var C := var B :| B <= A; B - A;
  assert C == {};
}

method LetSuchThat2(n: nat)
{
  ghost var x := (var k :| k < n; k) + 3;  // fine, such a k always exists
  assert x < n+3;
  if (*) {
    x := var k :| 0 <= k < n; k;  // error: there may not be such a k
  } else {
    x := var k: nat :| k < n; k;  // error: there may not be such a k
  }
}

ghost method LetSuchThat3(n: int) returns (xx: int, yy: Lindgren) {
  xx := var x :| x in {1}; x+10;
  xx := var x :| x in {3, 7, 11}; x+10;
  xx := var x :| x in {n + 12}; x+10;
  yy := var y :| y in {HerrNilsson}; y;
  yy := var y :| y == y; y;
  xx := var x :| x in multiset{3, 3, 2, 3}; x+10;
  xx := var x :| x in map[5 := 10, 6 := 12]; x+10;
  xx := var x :| x in [n, n, 2]; x+10;
  xx := var x :| x in (var m : map<int,int> := map[]; m); x+10;  // error
}

// ------------- ghost loops only modify ghost fields

class GT {
  var x: int;
  var y: int;
  ghost var z: int;
  method M0(N: int)
    modifies this;
  {
    x := 18;
    var n := 0;
    while n < 100 {  // not a ghost loop
      n, y := n + 1, y + 1;
    }
    assert x == 18;  // error: the verifier loses this information for the loop
  }
  method M1(ghost N: int)
    modifies this;
  {
    x := 18;
    ghost var n := N;
    while n < 100 {  // a ghost loop
      n, z := n + 1, z + 1;
    }
    assert x == 18;  // fine, the verifier knows that the loop modifies only ghost state
  }
  method P0()
    modifies this;
  ghost method P1()
    modifies this;
  method Q()
    modifies this;
  {
    if (*) {
      P0();
      assert forall x: GT {:nowarn} :: x != null ==> !fresh(x);  // error: method P2 may have allocated stuff
    } else {
      P1();
      assert forall x: GT {:nowarn} :: x != null ==> !fresh(x);  // fine, because the ghost method does not allocate anything
    }
  }
}

// ----- tests of various ways to express that a collection is nonempty, showing that these all lead to being
// ----- able to pick an element from the (domain of the) collection

module GenericPick {
  function SetPick0<U>(s: set<U>): U
    requires s != {}
  {
    var x :| x in s; x
  }
  function SetPick1<U>(s: set<U>): U
    requires |s| != 0
  {
    var x :| x in s; x
  }
  function SetPick2<U>(s: set<U>): U
    requires exists x :: x in s
  {
    var x :| x in s; x
  }

  function MultisetPick0<U>(s: multiset<U>): U
    requires s != multiset{}
  {
    var x :| x in s; x
  }
  function MultisetPick1<U>(s: multiset<U>): U
    requires |s| != 0
  {
    var x :| x in s; x
  }
  function MultisetPick2<U>(s: multiset<U>): U
    requires exists x :: x in s
  {
    var x :| x in s; x
  }
  function MultisetPick3<U>(s: multiset<U>): U
    requires exists x :: s[x] > 0
  {
    var x :| x in s; x
  }

  function SeqPick0<U>(s: seq<U>): U
    requires s != []
  {
    EquivalentWaysOfSayingSequenceIsNonempty(s);  // I wish this wasn't needed; see comment near Seq#Length axioms in DafnyPrelude.bpl
    var x :| x in s; x
  }
  function SeqPick1<U>(s: seq<U>): U
    requires |s| != 0
  {
    EquivalentWaysOfSayingSequenceIsNonempty(s);  // I wish this wasn't needed; see comment near Seq#Length axioms in DafnyPrelude.bpl
    var x :| x in s; x
  }
  function SeqPick2<U>(s: seq<U>): U
    requires exists x :: x in s
  {
    var x :| x in s; x
  }
  function SeqPick3<U>(s: seq<U>): U
    requires exists i {:nowarn} :: 0 <= i < |s|
  {
    EquivalentWaysOfSayingSequenceIsNonempty(s);  // I wish this wasn't needed; see comment near Seq#Length axioms in DafnyPrelude.bpl
    var x :| x in s; x
  }
  function SeqPick4<U>(s: seq<U>): U
    requires exists i {:nowarn} :: 0 <= i < |s|
  {
    var i :| 0 <= i < |s|; s[i]
  }
  lemma EquivalentWaysOfSayingSequenceIsNonempty<U>(s: seq<U>)
    requires s != []
          || |s| != 0
          || exists i {:nowarn} :: 0 <= i < |s|
    ensures exists x :: x in s
  {
    assert s[0] in s;
  }

  function MapPick0<U,V>(m: map<U,V>): U
    requires m != map[]
  {
    var x :| x in m; x
  }
  function MapPick1<U,V>(m: map<U,V>): U
    requires |m| != 0
  {
    var x :| x in m; x
  }
  function MapPick2<U,V>(m: map<U,V>): U
    requires exists x :: x in m
  {
    var x :| x in m; x
  }
}