summaryrefslogtreecommitdiff
path: root/Test/dafny0/NewtypesResolution.dfy
blob: 9ae657b7b785e5db6a94b09d04289f28793bec28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// RUN: %dafny /compile:0 /print:"%t.print" /dprint:"%t.dprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"

module Cycle {
  type MySynonym = MyNewType  // error: a cycle
  newtype MyNewType = MyIntegerType_WellSupposedly
  type MyIntegerType_WellSupposedly = MySynonym
}

module MustBeNumeric {
  datatype List<T> = Nil | Cons(T, List)
  newtype NewDatatype = List<int>  // error: base type must be numeric based
}

module Goodies {
  newtype int32 = int
  newtype posReal = real
  newtype int8 = int32

  method M()
  {
    var k8 := new int8[100];
    var s: set<int32>;
    var x: posReal;
    var y: posReal;
    var z: int32;
    x := 5.3;
    z := 12;
    s := {};
    s := {40,20};
    x := x + y;
    var r0 := real(x);
    var r1: real := 2.0 * r0;
    var i0 := int(z);
    var i1: nat := 2 * i0;
    assert i1 == 24;
    assert r1 == 10.6;
    if x == r0 {  // error: cannot compare posReal and real
    } else if real(x) == r0 {
    } else if i0 == int(x) {
    } else if i0 == int(real(x)) {
    } else if real(i0) == real(x) {
    }
    if z == i0 {  // error: cannot compare int32 and int
    } else if int(z) == i0 {
    } else if r0 == real(z) {
    } else if r0 == real(int(z)) {
    } else if int(r0) == int(z) {
    }
    assert x == z;  // error: cannot compare posReal and int32
    assert x <= z;  // error: cannot compare posReal and int32
    assert z < i0;  // error: cannot compare int32 and int
    assert x > r1;  // error: cannot compare posReal and real

    var di := z % 2 - z / 2 + if z == 0 then 3 else 100 / z + 100 % z;
    var dr := x / 2.0 + if x == 0.0 then 3.0 else 100.0 / x;
    dr := dr % 3.0 + 3.0 % dr;  // error (x2): mod not supported for real-based types
    z, x := di, dr;

    var sq := [23, 50];
    assert forall ii :: 0 <= ii < |sq| ==> sq[ii] == sq[ii];
    var ms := multiset{23.0, 50.0};
    assert forall rr :: 0.0 <= rr < 100.0  ==> ms[rr] == ms[rr];

    var truncated := r0.Trunc + x.Trunc;
    var rounded := (r0 + 0.5).Trunc;
  }
}

module Constraints {
  newtype SmallInt = x: int | 0 <= x < 100
  newtype LargeInt = y: int | 0 <= y < 100

  newtype BadConstraint = a: SmallInt
    | a + a  // error: not a boolean
  newtype WotsDisVariable = u  :BadConstraint
    | u + a < 50  // error: undeclared identifier 'a'

  newtype A = x: int | 0 <= x
  newtype B = x: A | x < 100
  newtype C = B  // the constraints 0 <= x < 100 still apply

  predicate IsEven(x: int)  // note that this is a ghost predicate
  {
    x % 2 == 0
  }
  newtype G = x: int | IsEven(x)  // it's okay to use ghost constructs in type constraints

  newtype N = nat

  newtype OldState = y: real | old(y) == y  // error: old is not allowed in constraint

  newtype AssertType = s: int |
    var k := s;
    assert k == s;
    k < 10 || 10 <= s
}

module WrongNumberOfArguments {
  newtype N = nat
  method BadTypeArgs(n: N<int>)  // error: N takes no type arguments
}

module CyclicDependencies {
  newtype Cycle = x: int | (BadLemma(); false)  // error: cycle
  lemma BadLemma()
    ensures false;
  {
    var c: Cycle;
  }
}

module SelfCycleTest {
  newtype SelfCycle = x: int | var s: SelfCycle := 4; s < 10  // error: cyclic dependency on itself
}

module Module0 {
  import Module1
  method M(x: int) returns (n: Module1.N9) {
    var x := Module1.N9;  // error
  }
}

module Module1 {
  newtype N9 = int
}

module InferredType {
  newtype Int = x | 0 <= x < 100
  newtype Real = r | 0.0 <= r <= 100.0
  method M() returns (i: Int, r: Real)
  {
    i := 4;
    r := 4.0;
  }
  newtype AnotherInt = int
  method P(i: int, a: AnotherInt) returns (j: Int)
  {
    j := i;  // error: int not assignable to Int
    j := a;  // error: AnotherInt not assignable to Int
  }
}

module SynonymsAndModules {
  module M {
    type Syn = int
    type Y = Klass
    class Klass {
      static method H()
    }
  }

  method P()
  {
    var x: M.Syn;
    x := B;  // error: bad use of B
    x := M.Syn;  // error: bad use of M.Syn
    C.D();
    X.D();
    M.Klass.H();
    M.Y.H();
    M.Y.U();  // error: non-existent member U
  }

  type B = int
  type X = C
  class C {
    static method D()
  }
}

module MoreSynonyms {
  import SynonymLibrary

  type Syn<T> = Syn'<T,T>
  type Syn'<A,B> = C<B>
  class C<alpha> {
    static method MyMethod<beta>(b: beta, a: alpha)
  }
  method M() {
    var a, b;
    Syn.MyMethod(b, a);
    a, b := 25, true;
  }
  method P() {
    var d := SynonymLibrary.S.Cons(50, SynonymLibrary.Dt.Nil);
    var e := SynonymLibrary.Dt.Cons(true, SynonymLibrary.S.Cons(40, d));
    var f := SynonymLibrary.S.Cons(50, SynonymLibrary.S.Cons(true, d));  // error: 'true' argument is expected to be an integer
  }
}

module SynonymLibrary {
  type S = Dt<int>
  datatype Dt<T> = Nil | Cons(T, S)
}

module QualifiedDatatypeCtor {
  type S = Dt<int>
  datatype Dt<T> = Nil | Cons(T, S)

  method P() {
    var d: S;
    var f := S.Cons(50, S.Nil);
  }
}

module IntegerBasedValues {
  type T

  newtype Even = x | x % 2 == 0

  method Arrays(n: nat, o: Even, i: Even) returns (x: T)
    requires 0 <= o;
    requires -1 < i;  // note, -1 is not of type Even, but that's for the verifier (not type checker) to check
  {
    var a := new T[n];
    var b := new T[o];
    var m := new T[o, n];
    var m' := new T[o, n, 3.14];  // error: 3.14 is not of an integer-based type
    if {
      case i < n =>  // error: i and n are of different integer-based types
        x := a[i];
      case i < a.Length =>  // error: i and a.Length are of different integer-based types
        x := a[i];
      case i < o =>
        x := b[i];
      case i < b.Length =>  // error: i and b.Length are of different integer-based types
        x := b[i];
      case i < m.Length0 =>  // error: i and m.Length0 are of different integer-based types
      case i < m.Length1 =>  // error: i and m.Length1 are of different integer-based types
    }
  }
  
  method Sequences(a: seq<T>, i: Even) returns (x: T, b: seq<T>)
    requires 0 <= i;
  {
    if {
      case i < |a| =>  // error: i and |a| are of different integer-based types
        x := a[i];
      case i <= int(|a|) =>  // error: type of i is a different integer-based type than int
        b := a[0..i];
    }
  }

  method MultisetUpdate<U>(m: multiset<U>, t: U, n: Even)
  {
    var m' := m[t := n];
    m' := m[t := 12];
    m' := m[t := 1.1415];  // error: real is not an integer-based numeric type
  }
}