1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
// RUN: %dafny /print:"%t.print" /dprint:"%t.dprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"
newtype int32 = int
newtype posReal = real
newtype int8 = int32
method M()
{
var k8 := new int8[100];
var s: set<int32>;
var x: posReal;
var y: posReal;
var yOrig := y;
var z: int32;
x := 5.3;
z := 12;
s := {};
s := {40,20};
x := x + y;
var r0 := real(x);
var r1: real := 2.0 * r0;
var i0 := int(z);
var i1: nat := 2 * i0;
assert i1 == 24;
assert y == 0.0 ==> r1 == 10.6;
assert real(x) == r0;
assert 2.0 * real(x) == real(2.0 * x);
assert real(int(z)) == real(i0);
assert 2 * int(z) == int(2 * z);
var di: int32 := z / 2 + 24 / z;
assert di == 8;
y := 60.0;
var dr: posReal := y / 2.0 + 120.0 / y;
assert dr == 32.0;
if yOrig == 0.3 {
var truncated := r0.Trunc + x.Trunc;
assert truncated == 5 + 5;
var rounded := (r0 + 0.5).Trunc;
assert rounded == 6;
}
}
module Constraints {
newtype SmallInt = x: int | 0 <= x < 100
newtype LargeInt = y: int | 0 <= y < 100
newtype A = x: int | 0 <= x
newtype B = x: A | x < 100
newtype C = B // the constraints 0 <= x < 100 still apply
predicate IsEven(x: int) // note that this is a ghost predicate
{
x % 2 == 0
}
newtype G = x: int | IsEven(x) // it's okay to use ghost constructs in type constraints
newtype N = nat
newtype AssertType = s: int |
var k := s;
assert k <= s;
k < 10 || 10 <= s
newtype Te = x: int | 0 <= x < 3 && [5, 7, 8][x] % 2 != 0
newtype Ta = x: int | 0 <= x < 3
newtype Tb = y: Ta | [5, 7, 8][int(y)] % 2 != 0 // the indexing is okay, because of the type constraint for Ta
newtype Odds = x: int | x % 2 == 1 // error: cannot find witness
newtype K = x: real | 10.0 <= x ==> 200.0 / (x - 20.0) < 30.0 // error: division by zero
}
module PredicateTests {
newtype char8 = x: int | 0 <= x < 256
method M() {
var u: char8 := 85;
var v: char8 := 86;
var ch := u + v - v + u;
assert ch + u == 255;
ch := ch + v - 3; // error: value out of range (for the plus operation)
}
method N() {
var y: char8;
if * {
y := y / 2;
y := y + 1;
y := 300; // error: value out of range
} else {
y := y + 1; // error: value out of range
}
}
method MidPoint_Bad(lo: char8, hi: char8) returns (mid: char8)
requires lo <= hi;
{
mid := (lo + hi) / 2; // error: intermediate result is out of range
}
method MidPoint_Good(lo: char8, hi: char8) returns (mid: char8)
requires lo <= hi;
{
mid := lo + (hi - lo) / 2;
}
method MidPoint_AlsoFine(lo: char8, hi: char8) returns (mid: char8)
requires lo <= hi;
{
mid := char8((int(lo) + int(hi)) / 2);
}
}
module Module0 {
import Module1
method M(x: int) returns (n: Module1.N9) {
n := Module1.N9(x);
}
}
module Module1 {
newtype N9 = int
}
module DatatypeCtorResolution {
datatype Pair = Pair(int, int)
method M() {
var p := Pair(5, 6);
var q: Pair;
q := p;
q := Pair.Pair(10, 20);
}
}
module X {
newtype Int = x | 0 <= x < 100
newtype Real = r | 0.0 <= r <= 100.0
method M() returns (i: Int, r: Real)
{
i := 4;
r := 4.0;
}
method N()
{
var x := var i := 3; i;
var y := var j := 3.0; j;
}
}
module IntegerBasedValues {
// Dafny allows any integer-based type, not just 'int', in the following
// places:
// * array indices (any dimension)
// * array lengths (with new, any dimension)
// * sequence indicies
// * subsequence bounds (like sq[lo..hi])
// * the new multiplicity in multiset update (m[t := multiplicity])
// * subarray-to-sequence bounds (like a[lo..hi])
// Note that for an array 'a', 'a.Length' is always an integer, so a
// comparison 'i < a.Length' still requires 'i' to be an integer, not
// any integer-based value. Same for '|sq|' for a sequence 'sq'.
type T
newtype Even = x | x % 2 == 0
method BadSpec(o: Even)
requires 1 < o; // error: 1 is not of type Even
method Arrays(n: nat, o: Even, i: Even, j: Even, k: nat) returns (x: T)
requires 0 <= o && 0 <= i && 0 <= j;
{
var a := new T[n];
var b := new T[o];
var m := new T[o, n];
if {
case int(i) < n => x := a[i];
case int(i) < a.Length => x := a[i];
case i < o => x := b[i];
case int(i) < b.Length => x := b[i];
case k < m.Length0 && int(j) < m.Length1 => x := m[k, j];
case int(i) < m.Length0 && k < m.Length1 => x := m[i, k];
case int(i) < m.Length0 && int(j) < m.Length1 => x := m[i, j];
case int(i) < m.Length0 && int(j) < m.Length1 => x := m[j, j]; // error: bad index 0
case int(i) < m.Length0 && int(j) < m.Length1 => x := m[i, i]; // error: bad index 1
case true =>
}
}
method Sequences(a: seq<T>, n: nat, i: Even, lo: Even, hi: Even) returns (x: T, b: seq<T>)
requires 0 <= i && 0 <= lo <= hi;
{
if {
case int(i) < |a| => x := a[i];
case |a| % 2 == 0 && i < Even(|a|) => x := a[i];
case int(hi) <= |a| => b := a[lo..hi];
case int(hi) <= |a| => b := a[..hi];
case int(hi) <= |a| => b := a[0..hi];
case int(lo) <= |a| => b := a[lo..];
case int(lo) <= |a| => b := a[lo..|a|];
case int(lo) <= |a| && |a| % 2 == 0 => assert a[lo..|a|] == a[lo..Even(|a|)];
case n <= int(hi) <= |a| => b := a[n..hi];
case int(lo) <= n <= |a| => b := a[lo..n];
case int(hi + hi) <= |a| => b := a[lo..Even(2*hi)];
case true =>
}
}
method MultisetUpdate<U>(m: multiset<U>, t: U, n: Even) returns (m': multiset<U>)
{
if {
case true =>
m' := m[t := n]; // error: n may be negative
m' := m[t := n+n]; // fine, if the previous statement was
case 0 <= n => m' := m[t := n];
case 0 <= n => m' := m[t := n+n+1]; // error: n+n+1 is not Even (like n+n and 1 are)
case 0 <= n => m' := m[t := int(n+n)+1];
}
}
}
module Guessing_Termination_Metrics {
newtype N = x | x == 0 || x == 3 || x == 7
method M_Bad() {
var x: N, y: N;
while x < y
decreases y - x; // error: y-x may not be an N
{
if 3 < y {
y := 3;
} else {
x := 3;
}
}
}
method M_Good() {
var x: N, y: N;
while x < y
decreases int(y) - int(x);
{
if 3 < y {
y := 3;
} else {
x := 3;
}
}
}
method M_Inferred() {
var x: N, y: N;
while x < y // the inferred decreases clause includes the type conversion to int
{
if 3 < y {
y := 3;
} else {
x := 3;
}
}
}
newtype R = r | r == 0.0 || 10.0 <= r <= 20.0
method P_Bad() {
var x: R, y: R;
while x < y
decreases y - x; // error: y-x may not be an R
{
if 12.0 < y {
y := 10.0;
} else {
x := 14.2;
}
}
}
method P_Good() {
var x: R, y: R;
while x < y
decreases real(y) - real(x);
{
if 12.0 < y {
y := 10.0;
} else {
x := 14.2;
}
}
}
method P_Inferred() {
var x: R, y: R;
while x < y // the inferred decreases clause includes the type conversion to real
{
if 12.0 < y {
y := 10.0;
} else {
x := 14.2;
}
}
}
}
|