summaryrefslogtreecommitdiff
path: root/Test/dafny0/NatTypes.dfy
blob: 2415254d1d56078462b1f79dfd92e2b34fb7e326 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// RUN: %dafny /compile:0 /print:"%t.print" /dprint:"%t.dprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"

method M(n: nat) {
  assert 0 <= n;
}

method Main() {
  M(25);
  M(-25);  // error: cannot pass -25 as a nat
}

class MyClass {
  var f: nat;

  method CheckField(x: nat, y: int)
    requires 0 <= y;
    modifies this;
  {
    var y: nat := y;

    assert 0 <= f;
    while (0 < y)
    {
      f := f + 1;
      if (15 < f) {
        f := f - 12;
      }
      y := y - 1;
    }
    assert 0 <= f;

    f := x;  // no problem
    f := x + 3;  // no problem here either
    f := x - 3;  // error: cannot prove RHS is a nat
  }
}

method Generic<T>(i: int, t0: T, t1: T) returns (r: T) {
  if (0 < i) {
    var n: nat := 5;
    var j := Generic(i-1, n, -4);
    assert 0 <= j;  // error: the result is an int, not a nat
    var q := FenEric(n, -4);
    assert 0 <= q;  // error: the result is an int, not a nat
  }
  r := t1;
}

function method FenEric<T>(t0: T, t1: T): T
{
  t1
}

datatype Pair<T> = Pr(T, T)

method K(n: nat, i: int) {
  match (Pair.Pr(n, i)) {
    case Pr(k, l) =>
      assert k == n;  // fine: although the type of k is int, we know it's equal to n
      assert 0 <= k;
      assert 0 <= l;  // error: l is an int
  }
}

datatype List<T> = Nil | Cons(nat, T, List<T>)

method MatchIt(list: List<object>) returns (k: nat)
{
  match (list) {
    case Nil =>
    case Cons(n, extra, tail) =>
      var w := MatchIt(tail);
      assert 0 <= w;
      assert 0 <= n;  // fine
      assert 0 <= n - 10;  // error: possible assertion failure
  }

  var m := Sum(list);
  assert 0 <= m;
  k := m;
}

class GenEric<T> {
  var f: T;
}

function method GE<T>(d: GenEric<T>): bool { true }

method TestGenEric() {
  var ge;
  if (ge != null) {
    var b := GE(ge);
    var n: nat := ge.f;  // error: the generic instantiation uses int, not nat
  }
}

function method Sum(list: List<object>): nat
{
  match list
  case Nil => 0
  case Cons(x, y, tail) => x + Sum(tail)
}

function BadSum(list: List<object>): nat
{
  match list
  case Nil => 0
  case Cons(x, y, tail) => x + BadSum(tail) - 30  // error: may not be a nat
}

function Abs(x: int): nat
{
  if 0 <= x then x else -x
}

// ----- Here are tests that the type of the result value of a function is known by the
// ----- time the well-formedness of the function's specification is checked.

function TakesANat(n: nat): bool
{
  n < 29
}

function Naturally(): nat
  ensures TakesANat(Naturally());  // the wellformedness of this check requires 
{
  17
}

function Integrally_Bad(): int
  ensures TakesANat(Integrally_Bad());  // error: well-formedness check fails
{
  17
}

function Integrally_Good(): int
  ensures 0 <= Integrally_Good();
  ensures TakesANat(Integrally_Good());  // here, the needed information follows from the preceding ensures clause
{
  17
}