blob: 13171c4741e4a30c3926ecd5d0b1d4197c645ee8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
function Fib(n: int): int
requires 0 <= n;
ensures 0 <= Fib(n);
{
if n < 2 then n else
Fib(n-2) + Fib(n-1)
}
datatype List = Nil | Cons(int, List);
function Sum(a: List): int
ensures 0 <= Sum(a);
{
match a
case Nil => 0
case Cons(x, tail) => if x < 0 then 0 else Fib(x)
}
function FibWithoutPost(n: int): int
requires 0 <= n;
{
if n < 2 then n else
FibWithoutPost(n-2) + FibWithoutPost(n-1)
}
function SumBad(a: List): int
ensures 0 <= Sum(a); // this is still okay, because this is calling the good Sum
ensures 0 <= SumBad(a); // error: cannot prove postcondition
{
match a
case Nil => 0
case Cons(x, tail) => if x < 0 then 0 else FibWithoutPost(x)
}
function FibWithExtraPost(n: int): int
ensures 2 <= n ==> 0 <= FibWithExtraPost(n-1); // This is fine, because the definition of the function is discovered via canCall
ensures 1 <= n ==> 0 <= FibWithExtraPost(n-1); // Error: In the current implementation of Dafny, one needs to actually call the
// function in order to benefit from canCall. This may be improved in the future.
ensures 0 <= FibWithExtraPost(n);
{
if n < 0 then 0 else
if n < 2 then n else
FibWithExtraPost(n-2) + FibWithExtraPost(n-1)
}
function DivergentPost(n: int): int
requires 0 <= n;
ensures 1 <= n ==> DivergentPost(n-1) == DivergentPost(n-1);
ensures DivergentPost(2*n - n) == DivergentPost(2*(n+5) - 10 - n); // these are legal ways to denote the result value of the function
ensures DivergentPost(n+1) == DivergentPost(n+1); // error: call may not terminate
{
if n < 2 then n else
DivergentPost(n-2) + DivergentPost(n-1)
}
|