summaryrefslogtreecommitdiff
path: root/Test/dafny0/Coinductive.dfy
blob: 4d197dd783d34a97d1d13b74d84f895c21c4ca03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// --------------------------------------------------

module TestInductiveDatatypes
{
  // The following types test for cycles that go via instantiated type arguments

  datatype Record<T> = Ctor(T);

  datatype RecInt = Ctor(Record<int>);  // this is fine
  datatype Rec_Forever = Ctor(Record<Rec_Forever>);  // error
  datatype Rec_Stops = Cons(Record<Rec_Stops>, Rec_Stops) | Nil;  // this is okay

  datatype D<T> = Ctor(E<D<T>>);  // error: illegal cycle
  datatype E<T> = Ctor(T);

  // the following is okay
  datatype MD<T> = Ctor(ME<T>);
  datatype ME<T> = Ctor(T);
  method M()
  {
    var d: MD<MD<int>>;
  }

  datatype A = Ctor(B);  // superficially looks like a cycle, but can still be constructed
  datatype B = Ctor(List<A>);
  datatype List<T> = Nil | Cons(T, List);
}

module MoreInductive {
  datatype Tree<G> = Node(G, List<Tree<G>>);
  datatype List<T> = Nil | Cons(T, List<T>);

  datatype M = All(List<M>);
  datatype H<'a> = HH('a, Tree<'a>);
  datatype K<'a> = KK('a, Tree<K<'a>>);  // error
  datatype L<'a> = LL('a, Tree<List<L<'a>>>);
}

// --------------------------------------------------

module TestCoinductiveDatatypes
{
  codatatype InfList<T> = Done | Continue(T, InfList);

  codatatype Stream<T> = More(T, Stream<T>);

  codatatype BinaryTreeForever<T> = BNode(val: T, left: BinaryTreeForever<T>, right: BinaryTreeForever<T>);

  datatype List<T> = Nil | Cons(T, List);

  codatatype BestBushEver<T> = Node(value: T, branches: List<BestBushEver<T>>);

  codatatype LazyRecord<T> = Lazy(contents: T);
  class MyClass<T> { }
  datatype GenericDt<T> = Blue | Green(T);
  datatype GenericRecord<T> = Rec(T);

  datatype FiniteEnough_Class = Ctor(MyClass<FiniteEnough_Class>);
  datatype FiniteEnough_Co = Ctor(LazyRecord<FiniteEnough_Co>);
  datatype FiniteEnough_Dt = Ctor(GenericDt<FiniteEnough_Dt>);  // fine
  datatype NotFiniteEnough_Dt = Ctor(GenericRecord<NotFiniteEnough_Dt>);  // error

}

// --------------- CoPredicates --------------------------

module CoPredicateResolutionErrors {

  codatatype Stream<T> = StreamCons(head: T, tail: Stream);

  function Upward(n: int): Stream<int>
  {
    StreamCons(n, Upward(n + 1))
  }

  function Doubles(n: int): Stream<int>
  {
    StreamCons(2*n, Doubles(n + 1))
  }

  copredicate Pos(s: Stream<int>)
  {
    0 < s.head && Pos(s.tail) && Even(s)
  }

  copredicate Even(s: Stream<int>)
  {
    s.head % 2 == 0 && Even(s.tail)
    && (s.head == 17 ==> Pos(s))
    && (Pos(s) ==> s.head == 17)  // error: cannot make recursive copredicate call in negative position
    && !Even(s)  // error: cannot make recursive copredicate call in negative position
    && (Even(s) <==> Even(s))  // error (x2): recursive copredicate calls allowed only in positive positions
  }

  copredicate Another(s: Stream<int>)
  {
    !Even(s)  // here, negation is fine
  }

  ghost method Lemma(n: int)
    ensures Even(Doubles(n));
  {
  }
}

// --------------------------------------------------

module UnfruitfulCoMethodConclusions {
  codatatype Stream<T> = Cons(head: T, tail: Stream);

  copredicate Positive(s: Stream<int>)
  {
    s.head > 0 && Positive(s.tail)
  }

  comethod BadTheorem(s: Stream)
    ensures false;
  {
    BadTheorem(s.tail);
  }

  comethod CM(s: Stream<int>)
    ensures true && !false;
    ensures s.head == 8 ==> Positive(s);
    ensures s.tail == s;
    ensures s.head < 100;
    ensures Positive(s) ==> s.tail == s;
    ensures Positive(s) ==> s.head > 88;
    ensures !Positive(s) ==> s.tail == s;
    ensures !(true && !false ==> Positive(s) && !Positive(s));
    ensures !(false && !true ==> Positive(s) && !Positive(s));
  {
  }
}