1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
// RUN: %dafny /compile:0 /print:"%t.print" /dprint:"%t.dprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"
class A {
method M() {
var y := new A[100];
y[5] := null;
}
method N0() {
var a: array<int>;
if (a != null && 5 < a.Length) {
a[5] := 12; // error: violates modifies clause
}
}
method N1(a: array<int>)
modifies a;
{
var b := a.Length; // error: a may be null
}
method N2(a: array<int>)
requires a != null;
modifies a;
{
a[5] := 12; // error: index may be outside bounds
}
method N3(a: array<int>)
requires a != null && 5 < a.Length;
modifies a;
ensures (forall i :: 0 <= i && i < a.Length ==> a[i] == old(a[i]) || (i == 5 && a[i] == 12));
{
a[5] := 12; // all is good
}
var zz0: array<A>;
var zz1: array<B>;
method O() {
var zz2 := new A[25];
assert zz2 != zz0; // holds because zz2 is newly allocated
var o: object := zz0;
assert this != o; // holds because zz0 has a different type
/****** This would be a good thing to be able to verify, but the current encoding is not up to the task
if (zz0 != null && zz1 != null && 2 <= zz0.Length && zz0.Length == zz1.Length) {
o := zz1[1];
assert zz0[1] == o ==> o == null; // holds because zz0 and zz1 have different element types
}
******/
assert zz2[20] == null; // error: no reason that this must hold
}
var x: array<int>;
method P0()
modifies this;
{
if (x != null && 100 <= x.Length) {
x[5] := 12; // error: violates modifies clause
}
}
method P1()
modifies this`x;
{
if (x != null && 100 <= x.Length) {
x[5] := 12; // error: violates modifies clause
}
}
method P2()
modifies x;
{
if (x != null && 100 <= x.Length) {
x[5] := 12; // fine
}
}
method Q() {
var a := new int[5];
a[0],a[1],a[2],a[3],a[4] := 0,1,2,3,4;
assert [1,2,3,4] == a[1..];
assert [1,2,3,4] == a[1.. a.Length];
assert [1] == a[1..2];
assert [0,1] == a[..2];
assert [0,1] == a[0..2];
assert forall i :: 0 <= i <= a.Length ==> [] == a[i..i];
assert [0,1,2,3,4] == a[..];
assert forall i :: 0 <= i < a.Length ==> a[i] == i;
}
method ArrayToSequenceTests(a: array<int>, lo: int, hi: int)
requires a != null;
{
if (a.Length == 10) {
var s;
s := a[2..5];
assert |s| == 3;
s := a[..5];
assert |s| == 5;
s := a[2..];
assert |s| == 8;
s := a[..];
assert |s| == 10;
s := a[..10] + a[0..];
} else {
if {
case 0 <= lo <= a.Length =>
var s := a[lo..] + a[..lo];
case 0 <= lo <= a.Length && 0 <= hi <= a.Length =>
var s := a[lo..hi]; // error: lo may be greater than hi
case true =>
}
}
}
function BadRangeReads(a: array<int>, all: bool): bool
{
a != null && a.Length == 10 &&
if all then
a[..] == [] // error: not allowed to read the elements of a
else
a[2..5] + // error: not allowed to read the elements of a
a[..5] + // error: not allowed to read the elements of a
a[2..] == [] // error: not allowed to read the elements of a
}
function GoodRangeReads(a: array<int>, all: bool): bool
reads a;
{
a != null && a.Length == 10 &&
if all then
a[..] == [] // no prob, since we now have a reads clause
else
a[2..5] + a[..5] + a[2..] == [] // no prob, since we now have a reads clause
}
function AnotherGoodRangeReads(a: array<int>, j: int): bool
{
a != null && 0 <= j && j <= a.Length &&
a[j..j] == []
}
}
type B;
// -------------------------------
class ArrayTests {
function F0(a: array<int>): bool
{
a != null && 10 <= a.Length &&
a[7] == 13 // error: reads on something outside reads clause
}
var b: array<int>;
function F1(): bool
reads this;
{
b != null && 10 <= b.Length &&
b[7] == 13 // error: reads on something outside reads clause
}
function F2(a: array<int>): bool
reads this, b, a;
{
a != null && 10 <= a.Length &&
a[7] == 13 // good
&&
b != null && 10 <= b.Length &&
b[7] == 13 // good
}
method M0(a: array<int>)
requires a != null && 10 <= a.Length;
{
a[7] := 13; // error: updates location not in modifies clause
}
method M1()
requires b != null && 10 <= b.Length;
modifies this;
{
b[7] := 13; // error: updates location not in modifies clause
}
method M2()
modifies this;
{
var bb := new int[75];
b := bb; // fine
}
method M3(a: array<int>)
requires a != null && 10 <= a.Length;
requires b != null && 10 <= b.Length;
modifies this, b, a;
{
a[7] := 13; // good
b[7] := 13; // good
}
}
// -------------------- induction attribute --------------------------------
ghost method Fill_I(s: seq<int>)
requires forall i :: 1 <= i < |s| ==> s[i-1] <= s[i];
ensures forall i,j {:induction i} :: 0 <= i < j < |s| ==> s[i] <= s[j];
{ // error: cannot prove postcondition
}
ghost method Fill_J(s: seq<int>)
requires forall i :: 1 <= i < |s| ==> s[i-1] <= s[i];
ensures forall i,j {:induction j} :: 0 <= i < j < |s| ==> s[i] <= s[j];
{
}
ghost method Fill_All(s: seq<int>)
requires forall i :: 1 <= i < |s| ==> s[i-1] <= s[i];
ensures forall i,j {:induction i,j} :: 0 <= i < j < |s| ==> s[i] <= s[j];
{
}
ghost method Fill_True(s: seq<int>)
requires forall i :: 1 <= i < |s| ==> s[i-1] <= s[i];
ensures forall i,j {:induction} :: 0 <= i < j < |s| ==> s[i] <= s[j];
{
}
ghost method Fill_False(s: seq<int>)
requires forall i :: 1 <= i < |s| ==> s[i-1] <= s[i];
ensures forall i,j {:induction false} :: 0 <= i < j < |s| ==> s[i] <= s[j];
{ // error: cannot prove postcondition
}
ghost method Fill_None(s: seq<int>)
requires forall i :: 1 <= i < |s| ==> s[i-1] <= s[i];
ensures forall i,j :: 0 <= i < j < |s| ==> s[i] <= s[j];
{ // error: cannot prove postcondition
}
// -------------- some regression tests; there was a time when array-element LHSs of calls were not translated correctly
method Test_ArrayElementLhsOfCall(a: array<int>, i: int, c: Cdefg<int>) returns (x: int)
requires a != null && c != null;
modifies a, c;
{
if (0 <= i < a.Length) {
a[i] := x;
a[i] := Test_ArrayElementLhsOfCall(a, i-1, c); // this line used to crash Dafny
c.t := x;
c.t := Test_ArrayElementLhsOfCall(a, i-1, c); // this line used to crash Dafny
var n: nat;
n := x; // error: subrange check is applied and it cannot be verified
n := Test_ArrayElementLhsOfCall(a, i-1, c); // error: subrange check is applied and it cannot be verified
}
}
class Cdefg<T> {
var t: T;
}
// ---------- allocation business -----------
class MyClass {
ghost var Repr: set<object>;
predicate Valid()
reads this, Repr;
}
method AllocationBusiness0(a: array<MyClass>, j: int)
requires a != null && 0 <= j < a.Length;
requires a[j] != null;
{
var c := new MyClass;
assert c !in a[j].Repr; // the proof requires allocation axioms for arrays
}
method AllocationBusiness1(a: array<MyClass>, j: int)
requires a != null && 0 <= j < a.Length;
requires a[j] != null && a[j].Valid();
{
var c := new MyClass;
assert a[j].Valid(); // the allocation should not have invalidated the validity of a[j]
}
method AllocationBusiness2(a: array2<MyClass>, i: int, j: int)
requires a != null && 0 <= i < a.Length0 && 0 <= j < a.Length1;
requires a[i,j] != null;
{
var c := new MyClass;
assert c !in a[i,j].Repr; // the proof requires allocation axioms for multi-dim arrays
}
|