summaryrefslogtreecommitdiff
path: root/Test/VerifyThis2015/Problem2.dfy
blob: 1c7deffde70691f97089a6f7690c4987cc236191 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// RUN: %dafny /compile:3 /print:"%t.print" /dprint:"%t.dprint" "%s" > "%t"
// RUN: %diff "%s.expect" "%t"

// Rustan Leino
// 13 April 2015, and many subsequent enhancements and revisions
// VerifyThis 2015
// Problem 2 -- Parallel GCD

method SequentialGcd(A: int, B: int) returns (gcd: int)
  requires A > 0 && B > 0
  ensures gcd == Gcd(A, B)
{
  var a, b := A, B;
  while
    invariant 0 < a && 0 < b
    invariant Gcd(A, B) == Gcd(a, b)
    decreases a + b
  {
    case a > b =>
      GcdDecrease(a, b);
      a := a - b;
    case b > a =>
      calc {
        Gcd(a, b);
        { Symmetry(a, b); }
        Gcd(b, a);
        { GcdDecrease(b, a); }
        Gcd(b - a, a);
        { Symmetry(b - a, a); }
        Gcd(a, b - a);
      }
      b := b - a;
  }
  GcdEqual(a);
  return a;
}

method ParallelGcd_ReadAB_WithoutTermination(A: int, B: int) returns (gcd: int)
  requires A > 0 && B > 0
  ensures gcd == Gcd(A, B)
  decreases *
{
  var a, b := A, B;
  var pc0, pc1 := 0, 0;  // program counter for the two processes
  var a0, b0, a1, b1;  // local variables for the two processes
  while !(pc0 == 2 && pc1 == 2)
    invariant 0 < a && 0 < b
    invariant Gcd(A, B) == Gcd(a, b)
    invariant 0 <= pc0 < 3 && 0 <= pc1 < 3
    invariant pc0 == 1 && b0 <= a0 ==> a0 == a && b0 == b
    invariant pc1 == 1 && a1 <= b1 ==> a1 == a && b1 == b
    invariant (pc0 == 2 ==> a == b) && (pc1 == 2 ==> a == b)
    decreases *
  {
    if {
      case pc0 == 0              => a0, b0, pc0 := a, b, 1;
      case pc0 == 1 && b0 < a0   => GcdDecrease(a, b);
                                    a, pc0 := a0 - b0, 0;
      case pc0 == 1 && b0 > a0  => pc0 := 0;
      case pc0 == 1 && b0 == a0 => pc0 := 2;  // move into a halting state
      case pc1 == 0             => a1, b1, pc1 := a, b, 1;
      case pc1 == 1 && a1 < b1  => Symmetry(a, b); GcdDecrease(b, a); Symmetry(b - a, a);
                                   b, pc1 := b1 - a1, 0;
      case pc1 == 1 && a1 > b1  => pc1 := 0;
      case pc1 == 1 && a1 == b1 => pc1 := 2;  // move into a halting state
    }
  }
  GcdEqual(a);
  gcd := a;
}

method ParallelGcd_WithoutTermination(A: int, B: int) returns (gcd: int)
  requires A > 0 && B > 0
  ensures gcd == Gcd(A, B)
  decreases *
{
  var a, b := A, B;
  var pc0, pc1 := 0, 0;  // program counter for the two processes
  var a0, b0, a1, b1;  // local variables for the two processes
  while !(pc0 == 3 && pc1 == 3)
    invariant 0 < a && 0 < b
    invariant Gcd(A, B) == Gcd(a, b)
    invariant 0 <= pc0 < 4 && 0 <= pc1 < 4
    invariant (pc0 == 0 || a0 == a) && (pc1 == 0 || b1 == b)
    invariant pc0 == 2 ==> b <= b0 && (b0 <= a0 ==> b0 == b)
    invariant pc1 == 2 ==> a <= a1 && (a1 <= b1 ==> a1 == a)
    invariant (pc0 == 3 ==> a == b) && (pc1 == 3 ==> a == b)
    decreases *
  {
    if {
      case pc0 == 0             => a0, pc0 := a, 1;
      case pc0 == 1             => b0, pc0 := b, 2;
      case pc0 == 2 && a0 > b0  => GcdDecrease(a, b);
                                   a, pc0 := a0 - b0, 0;
      case pc0 == 2 && a0 < b0  => pc0 := 0;
      case pc0 == 2 && a0 == b0 => pc0 := 3;
      case pc1 == 0             => b1, pc1 := b, 1;
      case pc1 == 1             => a1, pc1 := a, 2;
      case pc1 == 2 && b1 > a1  => Symmetry(a, b); GcdDecrease(b, a); Symmetry(b - a, a);
                                   b, pc1 := b1 - a1, 0;
      case pc1 == 2 && b1 < a1  => pc1 := 0;
      case pc1 == 2 && b1 == a1 => pc1 := 3;
    }
  }
  GcdEqual(a);
  gcd := a;
}

method ParallelGcd(A: int, B: int) returns (gcd: int)
  requires A > 0 && B > 0
  ensures gcd == Gcd(A, B)
{
  var a, b := A, B;
  var pc0, pc1 := 0, 0;  // program counter for the two processes
  var a0, b0, a1, b1;  // local variables for the two processes
  // To model fairness of scheduling, these "budget" variable give a bound on the number of times the
  // scheduler will repeatedly schedule on process to execute its "compare a and b" test.  When a
  // process executes its comparison, its budget is decreased and the budget for the other process
  // is set to some arbitrary positive amount.
  var budget0, budget1 :| budget0 > 0 && budget1 > 0;
  while !(pc0 == 3 && pc1 == 3)
    invariant 0 < a && 0 < b
    invariant Gcd(A, B) == Gcd(a, b)
    invariant 0 <= pc0 < 4 && 0 <= pc1 < 4
    invariant (pc0 == 0 || a0 == a) && (pc1 == 0 || b1 == b)
    invariant pc0 == 2 ==> b <= b0 && (b0 <= a0 ==> b0 == b)
    invariant pc1 == 2 ==> a <= a1 && (a1 <= b1 ==> a1 == a)
    invariant (pc0 == 3 ==> a == b) && (pc1 == 3 ==> a == b)
    invariant 0 <= budget0 && 0 <= budget1 && (pc0 == 3 || pc1 == 3 || 1 <= budget0 + budget1)
    // With the budgets, the program is guaranteed to terminate, as is proved by the following termination
    // metric (which is a lexicographic tuple):
    decreases a + b,
              FinalStretch(pc0, pc1, a0, b0, b) + FinalStretch(pc1, pc0, b1, a1, a),
              (if pc0 == 2 && a0 < b0 && !(a < b) then 1 else 0) + (if pc1 == 2 && b1 < a1 && !(b < a) then 1 else 0),
              (if a < b then budget0 else 0) + (if b < a then budget1 else 0),
              8 - pc0 - pc1
  {
    if {
      case pc0 == 0                            => a0, pc0 := a, 1;
      case pc0 == 1                            => b0, pc0 := b, 2;
      case pc0 == 2 && (budget0 > 0 || pc1 == 3) && a0 > b0  =>
                                                  GcdDecrease(a, b);
                                                  a, pc0 := a0 - b0, 0;
                                                  budget0, budget1 := BudgetUpdate(budget0, budget1, pc1);
      case pc0 == 2 && (budget0 > 0 || pc1 == 3) && a0 < b0  =>
                                                  pc0 := 0;
                                                  budget0, budget1 := BudgetUpdate(budget0, budget1, pc1);
      case pc0 == 2 && (budget0 > 0 || pc1 == 3) && a0 == b0 =>
                                                  pc0 := 3;
                                                  budget0, budget1 := BudgetUpdate(budget0, budget1, pc1);
      case pc1 == 0                            => b1, pc1 := b, 1;
      case pc1 == 1                            => a1, pc1 := a, 2;
      case pc1 == 2 && (budget1 > 0 || pc0 == 3) && b1 > a1  =>
                                                  Symmetry(a, b); GcdDecrease(b, a); Symmetry(b - a, a);
                                                  b, pc1 := b1 - a1, 0;
                                                  budget1, budget0 := BudgetUpdate(budget1, budget0, pc0);
      case pc1 == 2 && (budget1 > 0 || pc0 == 3) && b1 < a1  =>
                                                  pc1 := 0;
                                                  budget1, budget0 := BudgetUpdate(budget1, budget0, pc0);
      case pc1 == 2 && (budget1 > 0 || pc0 == 3) && b1 == a1 =>
                                                  pc1 := 3;
                                                  budget1, budget0 := BudgetUpdate(budget1, budget0, pc0);
    }
  }
  GcdEqual(a);
  gcd := a;
}

function FinalStretch(pcThis: int, pcThat: int, a0: int, b0: int, b: int): int
{
  if pcThat != 3 then 10  // we're not yet in the final stretch
  else if pcThis == 3 then 0
  else if pcThis == 2 && a0 == b0 then 1
  else if pcThis == 1 && a0 == b then 2
  else if pcThis == 0 then 3
  else if pcThis == 2 && a0 < b0 then 4
  else 5
}

method BudgetUpdate(inThis: int, inThat: int, pcThat: int) returns (outThis: int, outThat: int)
  requires pcThat == 3 || 0 < inThis
  ensures outThis == if 0 < inThis then inThis - 1 else inThis
  ensures if pcThat == 3 then outThat == inThat else outThat > 0
{
  outThis := if 0 < inThis then inThis - 1 else inThis;
  if pcThat == 3 {
    outThat := inThat;
  } else {
    outThat :| outThat > 0;
  }
}

function Gcd(a: int, b: int): int
  requires a > 0 && b > 0
{
  Exists(a, b);
  var d :| DividesBoth(d, a, b) && forall m :: DividesBoth(m, a, b) ==> m <= d;
  d
}

predicate DividesBoth(d: int, a: int, b: int)
  requires a > 0 && b > 0
{
  d > 0 && Divides(d, a) && Divides(d, b)
}

predicate {:opaque} Divides(d: int, a: int)
  requires d > 0 && a > 0
{
  exists n :: n > 0 && MulTriple(n, d, a)
}
predicate MulTriple(n: int, d: int, a: int)
  requires n > 0 && d > 0
{
  n * d == a
}

// ----- lemmas and proofs

lemma Exists(a: int, b: int)
  requires a > 0 && b > 0
  ensures exists d :: DividesBoth(d, a, b) && forall m :: DividesBoth(m, a, b) ==> m <= d;
{
  var d := ShowExists(a, b);
}

lemma ShowExists(a: int, b: int) returns (d: int)
  requires a > 0 && b > 0
  ensures DividesBoth(d, a, b) && forall m :: DividesBoth(m, a, b) ==> m <= d;
{
  forall
    ensures exists d :: DividesBoth(d, a, b)
  {
    OneDividesAnything(a);
    OneDividesAnything(b);
    assert Divides(1, a);
    assert Divides(1, b);
    assert DividesBoth(1, a, b);
  }
  d :| DividesBoth(d, a, b);
  DividesUpperBound(d, a);
  DividesUpperBound(d, b);
  while true
    invariant DividesBoth(d, a, b)
    invariant d <= a && d <= b
    decreases a + b - 2*d
  {
    if exists k :: DividesBoth(k, a, b) && k > d {
      var k :| DividesBoth(k, a, b) && k > d;
      d := k;
      assert Divides(d, a);
      DividesUpperBound(d, a);
      assert d <= a;
      DividesUpperBound(d, b);
      assert d <= b;
    } else {
      return;
    }
  }
}

lemma OneDividesAnything(a: int)
  requires a > 0
  ensures Divides(1, a)
{
  reveal_Divides();  // here, we use the definition of Divides
  assert MulTriple(a, 1, a);
}

lemma GcdEqual(a: int)
  requires a > 0
  ensures Gcd(a, a) == a
{
  DividesIdempotent(a);
  assert Divides(a, a);
  DividesUpperBound(a, a);
  assert DividesBoth(a, a, a);

  var k := Gcd(a, a);
  assert k > 0 && DividesBoth(k, a, a);
  assert forall m :: m > 0 && DividesBoth(m, a, a) ==> m <= k;
  assert Divides(k, a);
  DividesUpperBound(k, a);
}

lemma DividesIdempotent(a: int)
  requires a > 0
  ensures Divides(a, a)
{
  reveal_Divides();  // here, we use the body of function Divides
  assert MulTriple(1, a, a);
}

lemma DividesUpperBound(d: int, a: int)
  requires d > 0 && a > 0
  ensures Divides(d, a) ==> d <= a
{
  reveal_Divides();  // here, we use the body of function Divides
}

lemma Symmetry(a: int, b: int)
  requires a > 0 && b > 0
  ensures Gcd(a, b) == Gcd(b, a)
{
  var k, l := Gcd(a, b), Gcd(b, a);
  assert DividesBoth(k, a, b) && forall m :: DividesBoth(m, a, b) ==> m <= k;
  assert DividesBoth(l, b, a) && forall m :: DividesBoth(m, b, a) ==> m <= l;
  assert DividesBoth(l, a, b);
  assert forall m :: DividesBoth(m, b, a) ==> m <= l && DividesBoth(m, a, b);
  assert k == l;
}

lemma GcdDecrease(a: int, b: int)
  requires a > b > 0
  ensures Gcd(a, b) == Gcd(a - b, b)
{
  var k := Gcd(a - b, b);
  assert DividesBoth(k, a-b, b) && forall m :: DividesBoth(m, a-b, b) ==> m <= k;
  var n := DividesProperty(k, a-b);
  assert n*k == a-b;
  var p := DividesProperty(k, b);
  assert p*k == b;

  assert n*k + p*k == a-b + b;
  assert (n+p)*k == a;

  MultipleDivides(n+p, k, a);
  assert Divides(k, a);
  assert DividesBoth(k, a, b);

  var l := Gcd(a, b);
  assert forall m :: DividesBoth(m, a, b) ==> m <= l;
  assert k <= l;

  var n' := DividesProperty(l, a);
  var p' := DividesProperty(l, b);
  assert n'*l == a;
  assert p'*l == b;
  assert n'*l - p'*l == a - b;
  assert (n' - p')*l == a - b;
  MultipleDivides(n' - p', l, a - b);
  assert Divides(l, a - b);
  assert DividesBoth(l, a - b, b);
  assert l <= k;

  assert k == l;
}

lemma MultipleDivides(n: int, d: int, a: int)
  requires n > 0 && d > 0 && n*d == a
  ensures Divides(d, a)
{
  reveal_Divides();
  assert MulTriple(n, d, a);
}

lemma DividesProperty(d: int, a: int) returns (n: int)
  requires d > 0 && a > 0
  requires Divides(d, a)
  ensures n*d == a
{
  reveal_Divides();
  n :| n > 0 && MulTriple(n, d, a);
}