1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
module Analyzer
open Ast
open AstUtils
open CodeGen
open DafnyModelUtils
open PipelineUtils
open Options
open Printer
open Resolver
open DafnyPrinter
open Utils
open Microsoft.Boogie
let VarsAreDifferent aa bb =
printf "false"
List.iter2 (fun (_,Var(a,_)) (_,Var(b,_)) -> printf " || %s != %s" a b) aa bb
let Rename suffix vars =
vars |> List.map (function Var(nm,tp) -> nm, Var(nm + suffix, tp))
let ReplaceName substMap nm =
match Map.tryFind nm substMap with
| Some(Var(name, tp)) -> name
| None -> nm
let rec Substitute substMap = function
| IdLiteral(s) -> IdLiteral(ReplaceName substMap s)
| Dot(e,f) -> Dot(Substitute substMap e, ReplaceName substMap f)
| UnaryExpr(op,e) -> UnaryExpr(op, Substitute substMap e)
| BinaryExpr(n,op,e0,e1) -> BinaryExpr(n, op, Substitute substMap e0, Substitute substMap e1)
| SelectExpr(e0,e1) -> SelectExpr(Substitute substMap e0, Substitute substMap e1)
| UpdateExpr(e0,e1,e2) -> UpdateExpr(Substitute substMap e0, Substitute substMap e1, Substitute substMap e2)
| SequenceExpr(ee) -> SequenceExpr(List.map (Substitute substMap) ee)
| SeqLength(e) -> SeqLength(Substitute substMap e)
| ForallExpr(vv,e) -> ForallExpr(vv, Substitute substMap e)
| expr -> expr
let GenMethodAnalysisCode comp m assertion =
let methodName = GetMethodName m
let signature = GetMethodSig m
let ppre,ppost = GetMethodPrePost m
let pre = Desugar ppre
let post = Desugar ppost
" method " + methodName + "()" + newline +
" modifies this;" + newline +
" {" + newline +
// print signature as local variables
(match signature with
| Sig(ins,outs) ->
List.concat [ins; outs] |> List.fold (fun acc vd -> acc + (sprintf " var %s;" (PrintVarDecl vd)) + newline) "") +
" // assume precondition" + newline +
" assume " + (PrintExpr 0 pre) + ";" + newline +
" // assume invariant and postcondition" + newline +
" assume Valid();" + newline +
" assume " + (PrintExpr 0 post) + ";" + newline +
" // assume user defined invariant again because assuming Valid() doesn't always work" + newline +
(GetInvariantsAsList comp |> PrintSep newline (fun e -> " assume " + (PrintExpr 0 e) + ";")) + newline +
// if the following assert fails, the model hints at what code to generate; if the verification succeeds, an implementation would be infeasible
" // assert false to search for a model satisfying the assumed constraints" + newline +
" assert " + (PrintExpr 0 assertion) + ";" + newline +
" }" + newline
let MethodAnalysisPrinter onlyForThisCompMethod assertion comp mthd =
match onlyForThisCompMethod with
| (c,m) when c = comp && m = mthd ->
match m with
| Method(methodName, sign, pre, post, true) -> (GenMethodAnalysisCode comp m assertion) + newline
| _ -> ""
| _ -> ""
let rec IsArgsOnly args expr =
match expr with
| IntLiteral(_) -> true
| BoolLiteral(_) -> true
| Star -> true
| VarLiteral(id)
| IdLiteral(id) -> args |> List.exists (function Var(varName,_) when varName = id -> true | _ -> false)
| UnaryExpr(_,e) -> IsArgsOnly args e
| BinaryExpr(_,_,e1,e2) -> (IsArgsOnly args e1) && (IsArgsOnly args e2)
| IteExpr(c,e1,e2) -> (IsArgsOnly args c) && (IsArgsOnly args e1) && (IsArgsOnly args e2)
| Dot(e,_) -> IsArgsOnly args e
| SelectExpr(e1, e2) -> (IsArgsOnly args e1) && (IsArgsOnly args e2)
| UpdateExpr(e1, e2, e3) -> (IsArgsOnly args e1) && (IsArgsOnly args e2) && (IsArgsOnly args e3)
| SequenceExpr(exprs) | SetExpr(exprs) -> exprs |> List.fold (fun acc e -> acc && (IsArgsOnly args e)) true
| SeqLength(e) -> IsArgsOnly args e
| ForallExpr(vars,e) -> IsArgsOnly (List.concat [args; vars]) e
let GetUnifications expr args (heap,env,ctx) =
// - first looks if the give expression talks only about method arguments (args)
// - then checks if it doesn't already exist in the unification map
// - then it tries to evaluate it to a constant
// - if all of these succeed, it adds a unification rule e <--> val(e) to the given unifMap map
let __AddUnif e unifMap =
let builder = new CascadingBuilder<_>(unifMap)
builder {
let! argsOnly = IsArgsOnly args e |> Utils.BoolToOption
let! notAlreadyAdded = Map.tryFind e unifMap |> Utils.IsNoneOption |> Utils.BoolToOption
let! v = Eval (heap,env,ctx) e
Logger.DebugLine (" - adding unification " + (PrintExpr 0 e) + " <--> " + (PrintConst v));
return Map.add e v unifMap
}
// just recurses on all expressions
let rec __GetUnifications expr args unifs =
let unifs = __AddUnif expr unifs
match expr with
| IntLiteral(_)
| BoolLiteral(_)
| VarLiteral(_)
| IdLiteral(_)
| Star -> unifs
| Dot(e, _)
| SeqLength(e)
| ForallExpr(_,e)
| UnaryExpr(_,e) -> unifs |> __GetUnifications e args
| SelectExpr(e1, e2)
| BinaryExpr(_,_,e1,e2) -> unifs |> __GetUnifications e1 args |> __GetUnifications e2 args
| IteExpr(e1,e2,e3)
| UpdateExpr(e1, e2, e3) -> unifs |> __GetUnifications e1 args |> __GetUnifications e2 args |> __GetUnifications e3 args
| SetExpr(elst)
| SequenceExpr(elst) -> elst |> List.fold (fun acc e -> acc |> __GetUnifications e args) unifs
(* --- function body starts here --- *)
__GetUnifications expr args Map.empty
// =======================================================
/// Returns a map (Expr |--> Const) containing unifications
/// found for the given method and heap/env/ctx
// =======================================================
let GetUnificationsForMethod comp m (heap,env,ctx) =
let rec GetArgValueUnifications args env =
match args with
| Var(name,_) :: rest ->
match Map.tryFind (Unresolved(name)) env with
| Some(c) ->
Logger.DebugLine (" - adding unification " + (PrintConst c) + " <--> " + name);
Map.ofList [IdLiteral(name), c] |> Utils.MapAddAll (GetArgValueUnifications rest env)
| None -> failwith ("couldn't find value for argument " + name)
| [] -> Map.empty
(* --- function body starts here --- *)
match m with
| Method(mName,Sig(ins, outs),pre,post,_) ->
let args = List.concat [ins; outs]
match args with
| [] -> Map.empty
| _ -> GetUnifications (BinaryAnd pre post) args (heap,env,ctx)
|> Utils.MapAddAll (GetArgValueUnifications args env)
| _ -> failwith ("not a method: " + m.ToString())
// =========================================================================
/// For a given constant "o" (which is an object, something like "gensym32"),
/// finds a path of field references from "this".
///
/// Implements a backtracking search over the heap entries to find that
/// path. It starts from the given object, and follows the backpointers
/// until it reaches the root ("this")
// =========================================================================
let objRef2ExprCache = new System.Collections.Generic.Dictionary<Const, Expr>()
let GetObjRefExpr o (heap,env,ctx) =
let rec __GetObjRefExpr o (heap,env,ctx) visited =
if Set.contains o visited then
None
else
let newVisited = Set.add o visited
let refName = PrintObjRefName o (env,ctx)
match refName with
| "this" -> Some(IdLiteral(refName))
| _ ->
let rec __fff lst =
match lst with
| ((o,Var(fldName,_)),l) :: rest ->
match __GetObjRefExpr o (heap,env,ctx) newVisited with
| Some(expr) -> Some(Dot(expr, fldName))
| None -> __fff rest
| [] -> None
let backPointers = heap |> Map.filter (fun (_,_) l -> l = o) |> Map.toList
__fff backPointers
(* --- function body starts here --- *)
if objRef2ExprCache.ContainsKey(o) then
Some(objRef2ExprCache.[o])
else
let res = __GetObjRefExpr o (heap,env,ctx) (Set.empty)
match res with
| Some(e) -> objRef2ExprCache.Add(o, e)
| None -> ()
res
// =======================================================
/// Applies given unifications onto the given heap/env/ctx
///
/// If "conservative" is true, applies only those that
/// can be verified to hold, otherwise applies all of them
// =======================================================
let rec ApplyUnifications prog comp mthd unifs (heap,env,ctx) conservative =
let __CheckUnif o f e idx =
if not conservative || not Options.CONFIG.checkUnifications then
true
else
let objRefExpr = GetObjRefExpr o (heap,env,ctx) |> Utils.ExtractOptionMsg ("Couldn't find a path from 'this' to " + (PrintObjRefName o (env,ctx)))
let fldName = PrintVarName f
let lhs = Dot(objRefExpr, fldName)
let assertionExpr = match f with
| Var(_, Some(SeqType(_))) when not (idx = -1) -> BinaryEq (SelectExpr(lhs, IntLiteral(idx))) e
| Var(_, Some(SetType(_))) when not (idx = -1) -> BinaryIn e lhs
| _ -> BinaryEq lhs e
// check if the assertion follows and if so update the env
let code = PrintDafnyCodeSkeleton prog (MethodAnalysisPrinter (comp,mthd) assertionExpr)
Logger.Debug (" - checking assertion: " + (PrintExpr 0 assertionExpr) + " ... ")
let ok = CheckDafnyProgram code ("unif_" + (GetMethodFullName comp mthd))
if ok then
Logger.DebugLine " HOLDS"
else
Logger.DebugLine " DOESN'T HOLD"
ok
(* --- function body starts here --- *)
match unifs with
| (e,c) :: rest ->
let restHeap,env,ctx = ApplyUnifications prog comp mthd rest (heap,env,ctx) conservative
let newHeap = restHeap |> Map.fold (fun acc (o,f) l ->
let value = TryResolve (env,ctx) l
if value = c then
if __CheckUnif o f e -1 then
// change the value to expression
Logger.TraceLine (sprintf " - applied: %s.%s --> %s" (PrintConst o) (GetVarName f) (PrintExpr 0 e) )
acc |> Map.add (o,f) (ExprConst(e))
else
// don't change the value unless "conservative = false"
acc |> Map.add (o,f) l
else
let rec __UnifyOverLst lst cnt =
match lst with
| lstElem :: rest when lstElem = c ->
if __CheckUnif o f e cnt then
Logger.TraceLine (sprintf " - applied: %s.%s[%d] --> %s" (PrintConst o) (GetVarName f) cnt (PrintExpr 0 e) )
ExprConst(e) :: __UnifyOverLst rest (cnt+1)
else
lstElem :: __UnifyOverLst rest (cnt+1)
| lstElem :: rest ->
lstElem :: __UnifyOverLst rest (cnt+1)
| [] -> []
// see if it's a list, then try to match its elements, otherwise leave it as is
match value with
| SeqConst(clist) ->
let newLstConst = __UnifyOverLst clist 0
acc |> Map.add (o,f) (SeqConst(newLstConst))
| SetConst(cset) ->
let newLstConst = __UnifyOverLst (Set.toList cset) 0
acc |> Map.add (o,f) (SetConst(newLstConst |> Set.ofList))
| _ ->
acc |> Map.add (o,f) l
) restHeap
(newHeap,env,ctx)
| [] -> (heap,env,ctx)
// ====================================================================================
/// Returns whether the code synthesized for the given method can be verified with Dafny
// ====================================================================================
let VerifySolution prog comp mthd (heap,env,ctx) =
// print the solution to file and try to verify it with Dafny
let solution = Map.empty |> Map.add (comp,mthd) (heap,env,ctx)
let code = PrintImplCode prog solution (fun p -> [comp,mthd])
CheckDafnyProgram code dafnyVerifySuffix
let TryInferConditionals prog comp m unifs (heap,env,ctx) =
let heap2,env2,ctx2 = ApplyUnifications prog comp m unifs (heap,env,ctx) false
// get expressions to evaluate:
// - add pre and post conditions
// - go through all objects on the heap and assert its invariant
let pre,post = GetMethodPrePost m
let prepostExpr = post |> RewriteMethodArgs (GetMethodArgs m) //TODO: do we need the "pre" here as well?
let heapObjs = heap |> Map.fold (fun acc (o,_) _ -> acc |> Set.add o) Set.empty
let expr = heapObjs |> Set.fold (fun acc o ->
let receiverOpt = GetObjRefExpr o (heap,env,ctx)
let receiver = Utils.ExtractOption receiverOpt
match Resolve (env,ctx) o with
| NewObj(_,tOpt) | ThisConst(_,tOpt) ->
let t = Utils.ExtractOptionMsg "Type missing for heap object" tOpt
let objComp = FindComponent prog (GetTypeShortName t) |> Utils.ExtractOption
let objInvs = GetInvariantsAsList objComp
let objInvsUpdated = objInvs |> List.map (ChangeThisReceiver receiver)
objInvsUpdated |> List.fold (fun a e -> BinaryAnd a e) acc
| _ -> failwith "not supposed to happen"
) prepostExpr
expr |> SplitIntoConjunts |> List.iter (fun e -> printfn "%s" (PrintExpr 0 e); printfn "")
// now evaluate and see what's left
let c = Eval (heap,env,ctx) expr
Some(heap2,env2,ctx2)
// ============================================================================
/// Attempts to synthesize the initialization code for the given constructor "m"
///
/// Returns a (heap,env,ctx) tuple
// ============================================================================
let AnalyzeConstructor prog comp m =
let methodName = GetMethodName m
// generate Dafny code for analysis first
let code = PrintDafnyCodeSkeleton prog (MethodAnalysisPrinter (comp,m) FalseLiteral)
Logger.InfoLine (" [*] analyzing constructor " + methodName + (PrintSig (GetMethodSig m)))
Logger.Info " - searching for an instance ..."
let models = RunDafnyProgram code (dafnyScratchSuffix + "_" + (GetMethodFullName comp m))
if models.Count = 0 then
// no models means that the "assert false" was verified, which means that the spec is inconsistent
Logger.WarnLine " !!! SPEC IS INCONSISTENT !!!"
None
else
if models.Count > 1 then
Logger.WarnLine " FAILED "
failwith "internal error (more than one model for a single constructor analysis)"
Logger.InfoLine " OK "
let model = models.[0]
let heap,env,ctx = ReadFieldValuesFromModel model prog comp m
let unifs = GetUnificationsForMethod comp m (heap,env,ctx) |> Map.toList
let heap,env,ctx = ApplyUnifications prog comp m unifs (heap,env,ctx) true
if Options.CONFIG.verifySolutions then
Logger.InfoLine " - verifying synthesized solution ... "
let verified = VerifySolution prog comp m (heap,env,ctx)
Logger.Info " "
if verified then
Logger.InfoLine "~~~ VERIFIED ~~~"
Some(heap,env,ctx)
else
Logger.InfoLine "!!! NOT VERIFIED !!!"
Logger.InfoLine "Trying to infer conditionals"
TryInferConditionals prog comp m unifs (heap,env,ctx)
else
Some(heap,env,ctx)
let GetMethodsToAnalyze prog =
let mOpt = Options.CONFIG.methodToSynth;
if mOpt = "*" then
(* all *)
FilterMembers prog FilterConstructorMembers
elif mOpt = "paramsOnly" then
(* only with parameters *)
FilterMembers prog FilterConstructorMembersWithParams
else
let allMethods,neg =
if mOpt.StartsWith("~") then
mOpt.Substring(1), true
else
mOpt, false
(* exactly one *)
let methods = allMethods.Split([|','|])
let lst = methods |> Array.fold (fun acc m ->
let compName = m.Substring(0, m.LastIndexOf("."))
let methName = m.Substring(m.LastIndexOf(".") + 1)
let c = FindComponent prog compName |> Utils.ExtractOptionMsg ("Cannot find component " + compName)
let mthd = FindMethod c methName |> Utils.ExtractOptionMsg ("Cannot find method " + methName + " in component " + compName)
(c,mthd) :: acc
) []
if neg then
FilterMembers prog FilterConstructorMembers |> List.filter (fun e -> not (Utils.ListContains e lst))
else
lst
// ============================================================================
/// Goes through a given list of methods of the given program and attempts to
/// synthesize code for each one of them.
///
/// Returns a map from (component * method) |--> (heap,env,ctx)
// ============================================================================
let rec AnalyzeMethods prog members =
match members with
| (comp,m) :: rest ->
match m with
| Method(_,_,_,_,true) ->
let solOpt = AnalyzeConstructor prog comp m
Logger.InfoLine ""
match solOpt with
| Some(heap,env,ctx) -> AnalyzeMethods prog rest |> Map.add (comp,m) (heap,env,ctx)
| None -> AnalyzeMethods prog rest
| _ -> AnalyzeMethods prog rest
| [] -> Map.empty
let Analyze prog filename =
let solutions = AnalyzeMethods prog (GetMethodsToAnalyze prog)
let progName = System.IO.Path.GetFileNameWithoutExtension(filename)
use file = System.IO.File.CreateText(dafnySynthFileNameTemplate.Replace("###", progName))
file.AutoFlush <- true
Logger.InfoLine "Printing synthesized code"
let synthCode = PrintImplCode prog solutions GetMethodsToAnalyze
fprintfn file "%s" synthCode
()
//let AnalyzeComponent_rustan c =
// match c with
// | Component(Class(name,typeParams,members), Model(_,_,cVars,frame,inv), code) ->
// let aVars = Fields members
// let aVars0 = Rename "0" aVars
// let aVars1 = Rename "1" aVars
// let allVars = List.concat [aVars; List.map (fun (a,b) -> b) aVars0; List.map (fun (a,b) -> b) aVars1; cVars]
// let inv0 = Substitute (Map.ofList aVars0) inv
// let inv1 = Substitute (Map.ofList aVars1) inv
// // Now print it as a Dafny program
// printf "class %s" name
// match typeParams with
// | [] -> ()
// | _ -> printf "<%s>" (typeParams |> PrintSep ", " (fun tp -> tp))
// printfn " {"
// // the fields: original abstract fields plus two more copies thereof, plus and concrete fields
// allVars |> List.iter (function Var(nm,None) -> printfn " var %s;" nm | Var(nm,Some(tp)) -> printfn " var %s: %s;" nm (PrintType tp))
// // the method
// printfn " method %s_checkInjective() {" name
// printf " assume " ; (VarsAreDifferent aVars0 aVars1) ; printfn ";"
// printfn " assume %s;" (PrintExpr 0 inv0)
// printfn " assume %s;" (PrintExpr 0 inv1)
// printfn " assert false;" // {:msg "Two abstract states map to the same concrete state"}
// printfn " }"
// // generate code
// members |> List.iter (function
// | Constructor(methodName,signature,pre,stmts) -> printf "%s" (GenerateCode methodName signature pre stmts inv false)
// | Method(methodName,signature,pre,stmts) -> printf "%s" (GenerateCode methodName signature pre stmts inv true)
// | _ -> ())
// // the end of the class
// printfn "}"
// | _ -> assert false // unexpected case
|