summaryrefslogtreecommitdiff
path: root/Jennisys/Analyzer.fs
blob: 7bc2e6cdd8ea2d7392441ca29421da0ba5fbadc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
module Analyzer

open Ast
open AstUtils
open CodeGen
open DafnyModelUtils
open PipelineUtils
open Options
open Printer
open Resolver
open DafnyPrinter
open Utils

open Microsoft.Boogie

let MergeSolutions sol1 sol2 = 
  let rec __Merge sol1map sol2lst res =
    match sol2lst with
    | ((c2,m2), lst2) :: rest -> 
        match sol1map |> Map.tryFindKey (fun (c1,m1) lst1 -> GetComponentName c1 = GetComponentName c2 && GetMethodName m1 = GetMethodName m2) with
        | Some(c1,m1) -> 
            let lst1 = sol1map |> Map.find(c1,m1)
            let newRes = res |> Map.add (c1,m1) (lst1 @ lst2)
            __Merge sol1map rest newRes
        | None -> 
            let newRes = res |> Map.add (c2,m2) lst2
            __Merge sol1map rest newRes
    | [] -> res
  (* --- function body starts here --- *)
  __Merge sol1 (sol2 |> Map.toList) sol1 
                   
let Rename suffix vars =
  vars |> List.map (function Var(nm,tp) -> nm, Var(nm + suffix, tp))

let ReplaceName substMap nm =
  match Map.tryFind nm substMap with
    | Some(Var(name, tp)) -> name
    | None -> nm

let rec Substitute substMap = function
  | IdLiteral(s) -> IdLiteral(ReplaceName substMap s)
  | Dot(e,f) -> Dot(Substitute substMap e, ReplaceName substMap f)
  | UnaryExpr(op,e) -> UnaryExpr(op, Substitute substMap e)
  | BinaryExpr(n,op,e0,e1) -> BinaryExpr(n, op, Substitute substMap e0, Substitute substMap e1)
  | SelectExpr(e0,e1) -> SelectExpr(Substitute substMap e0, Substitute substMap e1)
  | UpdateExpr(e0,e1,e2) -> UpdateExpr(Substitute substMap e0, Substitute substMap e1, Substitute substMap e2)
  | SequenceExpr(ee) -> SequenceExpr(List.map (Substitute substMap) ee)
  | SeqLength(e) -> SeqLength(Substitute substMap e)
  | ForallExpr(vv,e) -> ForallExpr(vv, Substitute substMap e)
  | expr -> expr

let GenMethodAnalysisCode comp m assertion =
  let methodName = GetMethodName m
  let signature = GetMethodSig m 
  let ppre,ppost = GetMethodPrePost m 
  let pre = Desugar ppre
  let post = Desugar ppost
  "  method " + methodName + "()" + newline +
  "    modifies this;" + newline +
  "  {" + newline + 
  // print signature as local variables
  (match signature with
    | Sig(ins,outs) ->
        List.concat [ins; outs] |> List.fold (fun acc vd -> acc + (sprintf "    var %s;" (PrintVarDecl vd)) + newline) "") +
  "    // assume precondition" + newline +
  "    assume " + (PrintExpr 0 pre) + ";" + newline + 
  "    // assume invariant and postcondition" + newline + 
  "    assume Valid();" + newline +
  "    assume " + (PrintExpr 0 post) + ";" + newline +
  "    // assume user defined invariant again because assuming Valid() doesn't always work" + newline +
  (GetInvariantsAsList comp |> PrintSep newline (fun e -> "    assume " + (PrintExpr 0 e) + ";")) + newline +
  // if the following assert fails, the model hints at what code to generate; if the verification succeeds, an implementation would be infeasible
  "    // assert false to search for a model satisfying the assumed constraints" + newline + 
  "    assert " + (PrintExpr 0 assertion) + ";" + newline + 
  "  }" + newline
             
let rec MethodAnalysisPrinter onlyForThese assertion comp = 
  let cname = GetComponentName comp
  match onlyForThese with
  | (c,m) :: rest when GetComponentName c = cname -> 
    match m with 
    | Method(methodName, sign, pre, post, true) -> 
        (GenMethodAnalysisCode c m assertion) + newline +
        (MethodAnalysisPrinter rest assertion comp)
    | _ -> ""
  | _ :: rest -> MethodAnalysisPrinter rest assertion comp
  | [] -> ""

let rec IsArgsOnly args expr = 
  match expr with                                                
  | IntLiteral(_)                        -> true
  | BoolLiteral(_)                       -> true
  | Star                                 -> true
  | ObjLiteral(id)                       -> true
  | VarLiteral(id)
  | IdLiteral(id)                        -> args |> List.exists (function Var(varName,_) when varName = id -> true | _ -> false)
  | UnaryExpr(_,e)                       -> IsArgsOnly args e
  | BinaryExpr(_,_,e1,e2)                -> (IsArgsOnly args e1) && (IsArgsOnly args e2)
  | IteExpr(c,e1,e2)                     -> (IsArgsOnly args c) && (IsArgsOnly args e1) && (IsArgsOnly args e2)
  | Dot(e,_)                             -> IsArgsOnly args e
  | SelectExpr(e1, e2)                   -> (IsArgsOnly args e1) && (IsArgsOnly args e2)
  | UpdateExpr(e1, e2, e3)               -> (IsArgsOnly args e1) && (IsArgsOnly args e2) && (IsArgsOnly args e3)
  | SequenceExpr(exprs) | SetExpr(exprs) -> exprs |> List.fold (fun acc e -> acc && (IsArgsOnly args e)) true
  | SeqLength(e)                         -> IsArgsOnly args e
  | ForallExpr(vars,e)                   -> IsArgsOnly (List.concat [args; vars]) e
  | MethodCall(rcv,_,aparams)            -> rcv :: aparams |> List.fold (fun acc e -> acc && (IsArgsOnly args e)) true

let AddUnif indent e v unifMap =
  let idt = Indent indent
  let builder = new CascadingBuilder<_>(unifMap)
  builder {
    let! notAlreadyAdded = Map.tryFind e unifMap |> Utils.IsNoneOption |> Utils.BoolToOption
    Logger.DebugLine (idt + "    - adding unification " + (PrintExpr 0 e) + " <--> " + (PrintConst v))
    return Map.add e v unifMap
  }

//TODO: unifications should probably by "Expr <--> Expr" instead of "Expr <--> Const"
let rec GetUnifications indent args heapInst unifs expr =
  let idt = Indent indent
  // - first looks if the give expression talks only about method arguments (args)
  // - then checks if it doesn't already exist in the unification map
  // - then it tries to evaluate it to a constant
  // - if all of these succeed, it adds a unification rule e <--> val(e) to the given unifMap map
  let __AddUnif e unifsAcc =
    let builder = new CascadingBuilder<_>(unifsAcc)
    builder {
      let! argsOnly = IsArgsOnly args e |> Utils.BoolToOption
      let! v = try Some(Eval heapInst true e |> Expr2Const) with ex -> None
      return AddUnif indent e v unifsAcc
    }
  (* --- function body starts here --- *)
  AstUtils.DescendExpr2 __AddUnif expr unifs

//  =======================================================
/// Returns a map (Expr |--> Const) containing unifications
/// found for the given method and heap/env/ctx
//  =======================================================
let GetUnificationsForMethod indent comp m heapInst =
  let idt = Indent indent
  let rec GetArgValueUnifications args = 
    match args with
    | Var(name,_) :: rest -> 
        match Map.tryFind name heapInst.methodArgs with
        | Some(c) ->
            GetArgValueUnifications rest |> AddUnif indent (VarLiteral(name)) c
        | None -> failwith ("couldn't find value for argument " + name)
    | [] -> Map.empty
  (* --- function body starts here --- *)
  match m with
  | Method(mName,Sig(ins, outs),pre,post,_) -> 
      let args = List.concat [ins; outs]
      match args with 
      | [] -> Map.empty
      | _  -> let unifs = GetArgValueUnifications args
              GetUnifications indent args heapInst unifs (BinaryAnd pre post)
              
  | _ -> failwith ("not a method: " + m.ToString())

//  =========================================================================
/// For a given constant "o" (which is an object, something like "gensym32"), 
/// finds a path of field references from "this". 
///
/// Implements a backtracking search over the heap entries to find that
/// path.  It starts from the given object, and follows the backpointers
/// until it reaches the root ("this")
//  ========================================================================= 
let objRef2ExprCache = new System.Collections.Generic.Dictionary<string, Expr>()
let GetObjRefExpr objRefName (heapInst: HeapInstance) = 
  let rec __GetObjRefExpr objRefName visited = 
    if Set.contains objRefName visited then 
      None
    else 
      let newVisited = Set.add objRefName visited
      match objRefName with
      | "this" -> Some(ObjLiteral("this"))
      | _ -> 
          let rec __fff lst = 
            match lst with
            | ((o,Var(fldName,_)),_) :: rest -> 
                match __GetObjRefExpr o.name newVisited with
                | Some(expr) -> Some(Dot(expr, fldName))
                | None -> __fff rest
            | [] -> None
          let backPointers = heapInst.assignments |> List.filter (fun ((_,_),l) -> l = ObjLiteral(objRefName))
          __fff backPointers 
  (* --- function body starts here --- *)
  if objRef2ExprCache.ContainsKey(objRefName) then
    Some(objRef2ExprCache.[objRefName])
  else
    let res = __GetObjRefExpr objRefName (Set.empty)
    match res with 
    | Some(e) -> objRef2ExprCache.Add(objRefName, e)
    | None -> ()
    res

//  =======================================================
/// Applies given unifications onto the given heap/env/ctx
/// 
/// If "conservative" is true, applies only those that 
/// can be verified to hold, otherwise applies all of them
//  =======================================================
let rec ApplyUnifications indent prog comp mthd unifs heapInst conservative = 
  let idt = Indent indent
  let __CheckUnif o f e idx =
    if not conservative || not Options.CONFIG.checkUnifications then 
      true 
    else
      let objRefExpr = GetObjRefExpr o heapInst |> Utils.ExtractOptionMsg ("Couldn't find a path from 'this' to " + o)
      let fldName = PrintVarName f                             
      let lhs = Dot(objRefExpr, fldName)
      let assertionExpr = match f with
                          | Var(_, Some(SeqType(_))) when not (idx = -1) -> BinaryEq (SelectExpr(lhs, IntLiteral(idx))) e
                          | Var(_, Some(SetType(_))) when not (idx = -1) -> BinaryIn e lhs
                          | _                                            -> BinaryEq lhs e 
      // check if the assertion follows and if so update the env
      let code = PrintDafnyCodeSkeleton prog (MethodAnalysisPrinter [comp,mthd] assertionExpr) false
      Logger.Debug (idt + "    - checking assertion: " + (PrintExpr 0 assertionExpr) + " ... ")
      let ok = CheckDafnyProgram code ("unif_" + (GetMethodFullName comp mthd))
      if ok then
        Logger.DebugLine " HOLDS"
      else
        Logger.DebugLine " DOESN'T HOLD"
      ok
  (* --- function body starts here --- *)
  match unifs with
  | (e,c) :: rest -> 
      let heapInst = ApplyUnifications indent prog comp mthd rest heapInst conservative
      let newHeap = heapInst.assignments|> List.fold (fun acc ((o,f),value) ->
                                                       if value = Const2Expr c then
                                                         if __CheckUnif o.name f e -1 then                                                
                                                           // change the value to expression
                                                           //Logger.TraceLine (sprintf "%s    - applied: %s.%s --> %s" idt (PrintConst o) (GetVarName f) (PrintExpr 0 e) )
                                                           Utils.ListMapAdd (o,f) e acc 
                                                         else
                                                           // don't change the value unless "conservative = false"
                                                           Utils.ListMapAdd (o,f) value acc
                                                       else 
                                                         let rec __UnifyOverLst lst cnt =
                                                               match lst with
                                                               | lstElem :: rest when lstElem = Const2Expr c ->
                                                                   if __CheckUnif o.name f e cnt then
                                                                     //Logger.TraceLine (sprintf "%s    - applied: %s.%s[%d] --> %s" idt (PrintConst o) (GetVarName f) cnt (PrintExpr 0 e) )
                                                                     e :: __UnifyOverLst rest (cnt+1)
                                                                   else  
                                                                     lstElem :: __UnifyOverLst rest (cnt+1)
                                                               | lstElem :: rest ->
                                                                   lstElem :: __UnifyOverLst rest (cnt+1)
                                                               | [] -> []
                                                         // see if it's a list, then try to match its elements, otherwise leave it as is
                                                         match value with
                                                         | SequenceExpr(elist) -> 
                                                             let newExprList = __UnifyOverLst elist 0
                                                             Utils.ListMapAdd (o,f) (SequenceExpr(newExprList)) acc
                                                         | SetExpr(elist) ->
                                                             let newExprList = __UnifyOverLst elist 0
                                                             Utils.ListMapAdd (o,f) (SetExpr(newExprList)) acc
                                                         | _ -> 
                                                             Utils.ListMapAdd (o,f) value acc
                                                     ) heapInst.assignments
      {heapInst with assignments = newHeap }
  | [] -> heapInst

//  ====================================================================================
/// Returns whether the code synthesized for the given method can be verified with Dafny
//  ====================================================================================
let VerifySolution prog solutions genRepr =
  // print the solution to file and try to verify it with Dafny
  //let prog = Program(solutions |> Utils.MapKeys |> Map.ofList |> Utils.MapKeys)
  let code = PrintImplCode prog solutions genRepr
  CheckDafnyProgram code dafnyVerifySuffix

let rec DiscoverAliasing exprList heapInst = 
  match exprList with
  | e1 :: rest -> 
      let eqExpr = rest |> List.fold (fun acc e -> 
                                        if Eval heapInst true (BinaryEq e1 e) = TrueLiteral then
                                          BinaryAnd acc (BinaryEq e1 e)
                                        else
                                          acc
                                     ) TrueLiteral
      BinaryAnd eqExpr (DiscoverAliasing rest heapInst)
  | [] -> TrueLiteral

// ------------------------------- Modularization stuff ---------------------------------

let GetModularBranch prog comp meth hInst = 
  let rec __AddDirectChildren e acc = 
    match e with
    | ObjLiteral(_) when not (e = ThisLiteral || e = NullLiteral) -> acc |> Set.add e
    | SequenceExpr(elist)
    | SetExpr(elist) -> elist |> List.fold (fun acc2 e2 -> __AddDirectChildren e2 acc2) acc
    | _ -> acc
  let __GetDirectChildren = 
    let thisRhsExprs = hInst.assignments |> List.choose (function ((obj,_),e) when obj.name = "this" -> Some(e) | _ -> None)
    thisRhsExprs |> List.fold (fun acc e -> __AddDirectChildren e acc) Set.empty 
                 |> Set.toList
  let __IsAbstractField ty var = 
    let builder = CascadingBuilder<_>(false)
    let varName = GetVarName var
    builder {
      let! comp = FindComponent prog (GetTypeShortName ty)
      let! fld = GetAbstractFields comp |> List.fold (fun acc v -> if GetVarName v = varName then Some(varName) else acc) None
      return true
    }
  let __GetSpecFor objLitName = 
    let absFieldAssignments = hInst.assignments |> List.choose (fun ((obj,var),e) ->
                                                                  if obj.name = objLitName && __IsAbstractField obj.objType var then
                                                                    Some(var,e)
                                                                  else
                                                                    None)
    absFieldAssignments |> List.fold (fun acc (Var(varName,_),e) -> BinaryAnd acc (BinaryEq (IdLiteral(varName)) e)) TrueLiteral
  let __GetArgsUsed expr = 
    let args = GetMethodArgs meth
    let argSet = DescendExpr2 (fun e acc ->
                                 match e with
                                 | VarLiteral(vname) ->
                                     match args |> List.tryFind (function Var(name,_) when vname = name -> true | _ -> false) with
                                     | Some(var) -> acc |> Set.add var
                                     | None -> acc
                                 | _ -> acc
                               ) expr Set.empty
    argSet |> Set.toList
  let rec __GetDelegateMethods objs acc = 
    match objs with
    | ObjLiteral(name) as obj :: rest ->
        let mName = sprintf "_init_%s_%s" (GetMethodFullName comp meth |> String.map (fun c -> if c = '.' then '_' else c)) name
        let pre = TrueLiteral
        let post = __GetSpecFor name
        let ins = __GetArgsUsed (BinaryAnd pre post)
        let sgn = Sig(ins, [])
        let m = Method(mName, sgn, pre, post, true)
        __GetDelegateMethods rest (acc |> Map.add obj m)
    | _ :: rest -> failwith "internal error: expected to see only ObjLiterals"
    | [] -> acc
  let __FindObj objName = 
    try 
      hInst.assignments |> List.find (fun ((obj,_),_) -> obj.name = objName) |> fst |> fst
    with
      | ex -> failwithf "obj %s not found for method %s" objName (GetMethodFullName comp meth)
  (* --- function body starts here --- *)
  let directChildren = __GetDirectChildren
  let delegateMethods = __GetDelegateMethods directChildren Map.empty
  let initChildrenExprList = delegateMethods |> Map.toList
                                             |> List.map (fun (receiver, mthd) -> 
                                                            let key = __FindObj (PrintExpr 0 receiver), Var("", None)
                                                            let args = GetMethodArgs mthd |> List.map (fun (Var(name,_)) -> VarLiteral(name))
                                                            let e = MethodCall(receiver, GetMethodName mthd, args)
                                                            (key, e)
                                                         )
  let newAssgns = hInst.assignments |> List.filter (fun ((obj,_),_) -> if obj.name = "this" then true else false)
  let newProg, newComp, newMethodsLst = delegateMethods |> Map.fold (fun acc receiver newMthd ->
                                                                       let obj = __FindObj (PrintExpr 0 receiver)
                                                                       match acc with
                                                                       | accProg, accComp, accmList ->
                                                                           let oldComp = FindComponent accProg (GetTypeShortName obj.objType) |> Utils.ExtractOption
                                                                           let prog', mcomp' = AddReplaceMethod accProg oldComp newMthd None
                                                                           let mList' = (mcomp', newMthd) :: accmList
                                                                           let comp' = if accComp = oldComp then mcomp' else accComp
                                                                           prog', comp', mList'
                                                                    ) (prog, comp, [])
  newProg, newComp, newMethodsLst, { hInst with assignments = initChildrenExprList @ newAssgns }

//let GetModularSol prog sol = 
//  let comp = fst (fst sol)
//  let meth = snd (fst sol)
//  let rec __xxx prog lst = 
//    match lst with
//    | (cond, hInst) :: rest -> 
//        let newProg, newComp, newMthdLst, newhInst = GetModularBranch prog comp meth hInst
//        let newProg, newRest = __xxx newProg rest
//        newProg, ((cond, newhInst) :: newRest)
//    | [] -> prog, []
//  let newProg, newSolutions = __xxx prog (snd sol)
//  let newComp = FindComponent newProg (GetComponentName comp) |> Utils.ExtractOption
//  newProg, ((newComp, meth), newSolutions)
//
//let Modularize prog solutions = 
//  let rec __Modularize prog sols acc = 
//    match sols with
//    | sol :: rest -> 
//        let (newProg, newSol) = GetModularSol prog sol
//        let newAcc = acc |> Map.add (fst newSol) (snd newSol)
//        __Modularize newProg rest newAcc 
//    | [] -> (prog, acc)
//  (* --- function body starts here --- *) 
//  __Modularize prog (Map.toList solutions) Map.empty 

let MakeModular indent prog comp m cond heapInst = 
  let idt = Indent indent
  if Options.CONFIG.genMod then   
    Logger.InfoLine (idt + "    - delegating to method calls     ...")
    let newProg, newComp, newMthdLst, newHeapInst = GetModularBranch prog comp m heapInst
    let msol = Utils.MapSingleton (newComp,m) [cond, newHeapInst]
    newMthdLst |> List.fold (fun acc (c,m) -> 
                                  acc |> MergeSolutions (Utils.MapSingleton (c,m) []) //(AnalyzeConstructor (indent+2) newProg c m)
                              ) msol     
  else 
    Utils.MapSingleton (comp,m) [cond, heapInst]

// --------------------------------------------------------------------------------------

//  ============================================================================
/// Attempts to synthesize the initialization code for the given constructor "m"
///
/// Returns a (heap,env,ctx) tuple
//  ============================================================================                           
let rec AnalyzeConstructor indent prog comp m =
  let idt = Indent indent
  let methodName = GetMethodName m
  let pre,post = GetMethodPrePost m
  // generate Dafny code for analysis first
  let code = PrintDafnyCodeSkeleton prog (MethodAnalysisPrinter [comp,m] FalseLiteral) false
  Logger.InfoLine (idt + "[*] Analyzing constructor")
  Logger.InfoLine (idt + "------------------------------------------")
  Logger.InfoLine (PrintMethodSignFull (indent + 4) m)
  Logger.InfoLine (idt + "------------------------------------------")
  Logger.Info     (idt + "    - searching for an instance      ...")
  let models = RunDafnyProgram code (dafnyScratchSuffix + "_" + (GetMethodFullName comp m))  
  if models.Count = 0 then
    // no models means that the "assert false" was verified, which means that the spec is inconsistent
    Logger.WarnLine (idt + " !!! SPEC IS INCONSISTENT !!!")
    Map.empty
  else 
    if models.Count > 1 then 
      Logger.WarnLine " FAILED "
      failwith "internal error (more than one model for a single constructor analysis)"
    Logger.InfoLine " OK "
    let model = models.[0]
    let hModel = ReadFieldValuesFromModel model prog comp m
    let heapInst = ResolveModel hModel
    let unifs = GetUnificationsForMethod indent comp m heapInst |> Map.toList
    let heapInst = ApplyUnifications indent prog comp m unifs heapInst true
        
    // split into method calls
    let sol = MakeModular indent prog comp m TrueLiteral heapInst

    if Options.CONFIG.verifySolutions then
      Logger.InfoLine (idt + "    - verifying synthesized solution ... ")
      let verified = VerifySolution prog sol Options.CONFIG.genRepr
      Logger.Info (idt + "    ")
      if verified then
        Logger.InfoLine "~~~ VERIFIED ~~~"
        sol
      else 
        Logger.InfoLine "!!! NOT VERIFIED !!!"
        if Options.CONFIG.inferConditionals then
          Logger.InfoLine (idt + "    Strengthening the pre-condition")
          TryInferConditionals (indent + 4) prog comp m unifs heapInst
        else
          sol      
    else
      sol
and TryInferConditionals indent prog comp m unifs heapInst = 
  let idt = Indent indent
  let wrongSol = Utils.MapSingleton (comp,m) [TrueLiteral, heapInst]
  let heapInst2 = ApplyUnifications indent prog comp m unifs heapInst false
  // get expressions to evaluate:
  //   - add post (and pre?) conditions                                     
  //   - go through all objects on the heap and assert their invariants  
  let pre,post = GetMethodPrePost m
  let prepostExpr = post //TODO: do we need the "pre" here as well?
  let heapObjs = heapInst2.assignments |> List.fold (fun acc ((o,_),_) -> acc |> Set.add o) Set.empty
  let expr = heapObjs |> Set.fold (fun acc o -> 
                                     let receiverOpt = GetObjRefExpr o.name heapInst2
                                     let receiver = Utils.ExtractOption receiverOpt
                                     let objComp = FindComponent prog (GetTypeShortName o.objType) |> Utils.ExtractOption
                                     let objInvs = GetInvariantsAsList objComp
                                     let objInvsUpdated = objInvs |> List.map (ChangeThisReceiver receiver)
                                     objInvsUpdated |> List.fold (fun a e -> BinaryAnd a e) acc
                                  ) prepostExpr
  // now evaluate and see what's left
  let newCond = Eval heapInst2 false expr
  try
    if newCond = TrueLiteral then
      Logger.InfoLine (sprintf "%s    - no more interesting pre-conditions" idt)
      wrongSol
    else
      let candCond = 
        if newCond = FalseLiteral then
          // it must be because there is some aliasing going on between method arguments, 
          // so we should try that as a candidate pre-condition
          let tmp = DiscoverAliasing (GetMethodArgs m |> List.map (function Var(name,_) -> VarLiteral(name))) heapInst2
          if tmp = TrueLiteral then failwith ("post-condition evaluated to false and no aliasing was discovered")
          tmp
        else 
          newCond
      Logger.InfoLine (sprintf "%s    - candidate pre-condition: %s" idt (PrintExpr 0 candCond))
      let p2,c2,m2 = AddPrecondition prog comp m candCond
      let sol = MakeModular indent p2 c2 m2 candCond heapInst2
      Logger.Info (idt + "    - verifying partial solution ... ")
      let verified = 
        if Options.CONFIG.verifyPartialSolutions then
          VerifySolution p2 sol Options.CONFIG.genRepr
        else 
          true
      if verified then
        if Options.CONFIG.verifyPartialSolutions then
          Logger.InfoLine "VERIFIED"
        else 
          Logger.InfoLine "SKIPPED"
        let p3,c3,m3 = AddPrecondition prog comp m (UnaryNot(candCond))
        MergeSolutions sol (AnalyzeConstructor (indent + 2) p3 c3 m3)
      else 
        Logger.InfoLine "NOT VERIFIED"
        wrongSol                     
  with
    ex -> raise ex
  
let GetMethodsToAnalyze prog =
  let mOpt = Options.CONFIG.methodToSynth;
  if mOpt = "*" then
    (* all *)
    FilterMembers prog FilterConstructorMembers
  elif mOpt = "paramsOnly" then
    (* only with parameters *)
    FilterMembers prog FilterConstructorMembersWithParams 
  else
    let allMethods,neg = 
      if mOpt.StartsWith("~") then
        mOpt.Substring(1), true
      else
        mOpt, false
    (* exactly one *)
    let methods = allMethods.Split([|','|])
    let lst = methods |> Array.fold (fun acc m -> 
                                       let idx = m.LastIndexOf(".")
                                       if idx = -1 || idx = m.Length - 1 then
                                         raise (InvalidCmdLineArg("Invalid method full name: " + m))
                                       let compName = m.Substring(0, idx)
                                       let methName = m.Substring(idx + 1)
                                       let c = FindComponent prog compName |> Utils.ExtractOptionMsg ("Cannot find component " + compName)
                                       let mthd = FindMethod c methName |> Utils.ExtractOptionMsg ("Cannot find method " + methName + " in component " + compName)
                                       (c,mthd) :: acc
                                    ) []
    if neg then
      FilterMembers prog FilterConstructorMembers |> List.filter (fun e -> not (Utils.ListContains e lst))
    else
      lst
  

// ============================================================================
/// Goes through a given list of methods of the given program and attempts to 
/// synthesize code for each one of them.
///
/// Returns a map from (component * method) |--> Expr * HeapInstance
// ============================================================================
let rec AnalyzeMethods prog members = 
  match members with
  | (comp,m) :: rest -> 
      match m with
      | Method(_,_,_,_,true) -> 
          let solOpt = AnalyzeConstructor 2 prog comp m
          Logger.InfoLine ""
          AnalyzeMethods prog rest |> MergeSolutions solOpt
      | _ -> AnalyzeMethods prog rest
  | [] -> Map.empty

let Analyze prog filename =
  let rec __AddMethodsFromProg methods solutions = 
    match methods with
    | (c,m) :: rest -> 
        let exists = solutions |> Map.tryFindKey (fun (c1,m1) _ -> GetComponentName c = GetComponentName c1 && GetMethodName m = GetMethodName m1)
        match exists with
        | Some(_) -> __AddMethodsFromProg rest solutions
        | None -> __AddMethodsFromProg rest (solutions |> Map.add (c,m) [])
    | [] -> solutions
  /// Prints given solutions to a file
  let __PrintSolution prog outFileName solutions = 
    use file = System.IO.File.CreateText(outFileName)
    file.AutoFlush <- true  
    //let prog = Program(solutions |> Utils.MapKeys |> Map.ofList |> Utils.MapKeys)
    // add all other methods (those for which we don't have synthesized solution) as well
    let allMethods = FilterMembers prog FilterConstructorMembers
    let extSolutions = solutions //__AddMethodsFromProg allMethods solutions
    let synthCode = PrintImplCode prog extSolutions Options.CONFIG.genRepr
    fprintfn file "%s" synthCode
  (* --- function body starts here --- *)
  let solutions = AnalyzeMethods prog (GetMethodsToAnalyze prog)
  let progName = System.IO.Path.GetFileNameWithoutExtension(filename)
  let outFlatSolFileName = dafnySynthFileNameTemplate.Replace("###", progName)
  Logger.InfoLine "Printing synthesized code"
  __PrintSolution prog outFlatSolFileName solutions
  ()

//let AnalyzeComponent_rustan c =
//  match c with
//  | Component(Class(name,typeParams,members), Model(_,_,cVars,frame,inv), code) ->
//      let aVars = Fields members
//      let aVars0 = Rename "0" aVars
//      let aVars1 = Rename "1" aVars
//      let allVars = List.concat [aVars; List.map (fun (a,b) -> b) aVars0; List.map (fun (a,b) -> b) aVars1; cVars]
//      let inv0 = Substitute (Map.ofList aVars0) inv
//      let inv1 = Substitute (Map.ofList aVars1) inv
//      // Now print it as a Dafny program
//      printf "class %s" name
//      match typeParams with
//        | [] -> ()
//        | _  -> printf "<%s>"  (typeParams |> PrintSep ", " (fun tp -> tp))
//      printfn " {"
//      // the fields: original abstract fields plus two more copies thereof, plus and concrete fields
//      allVars |> List.iter (function Var(nm,None) -> printfn "  var %s;" nm | Var(nm,Some(tp)) -> printfn "  var %s: %s;" nm (PrintType tp))
//      // the method
//      printfn "  method %s_checkInjective() {" name
//      printf "    assume " ; (VarsAreDifferent aVars0 aVars1) ; printfn ";"
//      printfn "    assume %s;" (PrintExpr 0 inv0)
//      printfn "    assume %s;" (PrintExpr 0 inv1)
//      printfn "    assert false;" // {:msg "Two abstract states map to the same concrete state"}
//      printfn "  }"
//      // generate code
//      members |> List.iter (function
//        | Constructor(methodName,signature,pre,stmts) -> printf "%s" (GenerateCode methodName signature pre stmts inv false)
//        | Method(methodName,signature,pre,stmts) -> printf "%s" (GenerateCode methodName signature pre stmts inv true)
//        | _ -> ())
//      // the end of the class
//      printfn "}"
//  | _ -> assert false  // unexpected case