summaryrefslogtreecommitdiff
path: root/Test
diff options
context:
space:
mode:
authorGravatar Rustan Leino <unknown>2014-02-13 15:55:51 -0800
committerGravatar Rustan Leino <unknown>2014-02-13 15:55:51 -0800
commitaea970484bbe0b335e19a4d51842662d526a0304 (patch)
tree5fe168a1a0df389612b03db943de2d29ea05844a /Test
parenta60dbb41bd5757163c45fc2db9fb4840d3f4b4da (diff)
Added to the test suite a Dafny version of Basics.v from the "Software Foundations" book (Pierce et al.)
Diffstat (limited to 'Test')
-rw-r--r--Test/dafny4/Answer7
-rw-r--r--Test/dafny4/SoftwareFoundations-Basics.dfy504
-rw-r--r--Test/dafny4/runtest.bat2
3 files changed, 512 insertions, 1 deletions
diff --git a/Test/dafny4/Answer b/Test/dafny4/Answer
index bcf5123a..4108cdc0 100644
--- a/Test/dafny4/Answer
+++ b/Test/dafny4/Answer
@@ -18,3 +18,10 @@ Dafny program verifier finished with 24 verified, 0 errors
-------------------- KozenSilva.dfy --------------------
Dafny program verifier finished with 47 verified, 0 errors
+
+-------------------- SoftwareFoundations-Basics.dfy --------------------
+SoftwareFoundations-Basics.dfy(38,12): Error: assertion violation
+Execution trace:
+ (0,0): anon0
+
+Dafny program verifier finished with 80 verified, 1 error
diff --git a/Test/dafny4/SoftwareFoundations-Basics.dfy b/Test/dafny4/SoftwareFoundations-Basics.dfy
new file mode 100644
index 00000000..25adce4c
--- /dev/null
+++ b/Test/dafny4/SoftwareFoundations-Basics.dfy
@@ -0,0 +1,504 @@
+// Basics.v done in Dafny
+
+// Enumerated Types
+
+// Days of the Week
+
+datatype day =
+ monday
+ | tuesday
+ | wednesday
+ | thursday
+ | friday
+ | saturday
+ | sunday
+
+// See method test_next_weekday() below for an explanation of why this function
+// is declared a non-ghost (by "function method").
+function method next_weekday (d:day) : day
+{
+ match d
+ case monday => tuesday
+ case tuesday => wednesday
+ case wednesday => thursday
+ case thursday => friday
+ case friday => monday
+ case saturday => monday
+ case sunday => monday
+}
+
+method test_next_weekday()
+{
+ assert next_weekday(friday) == monday;
+ assert next_weekday(next_weekday(saturday)) == tuesday;
+ // Note, if you're not sure what some expression will compute, you
+ // can assert that it equals some arbitrary value of the correct type.
+ // For example:
+ var d := next_weekday(next_weekday(tuesday));
+ assert d == friday; // error (use the Verification Debugger to view the correct value)
+ // You will then get an error message (unless you were lucky and
+ // happened to pick the right value). If you're running the Dafny IDE
+ // in Visual Studio, you can then click on the red circle that signals
+ // the error. This will bring up the Verification Debugger, where you
+ // can inspect the value of d. Then try changing the assertion in
+ // the program to assert d to equal it. In some cases, depending on
+ // how many Dafny knows about the value you're trying to get it to
+ // compute, you may need to build a disjunction of values for d in the
+ // assertion.
+ // Or, just write a program that prints the value, compile the program,
+ // and run it -- Dafny is a programming language after all. (Note, by
+ // default, functions in Dafny of "ghost", which means they don't turn
+ // into compiled code. If you want to compile code for next_weekday, so
+ // that you can use it in a print statement, change "function" to
+ // "function method" in the declaration of next_weekday.) To try this
+ // out on rise4fun.com/dafny: (0) comment out (or fix!) the assert above
+ // so that the program will verify, (1) fill in a body of the uninterpreted
+ // function f on line 412 below (any body will do; for example, uncomment
+ // line 416), and (2) change the name of this method to Main().
+ print next_weekday(wednesday);
+}
+
+
+
+// Booleans
+
+// Booleans are built into Dafny as primitives. Nevertheless, here is
+// another definition, using an enumeration.
+
+datatype Bool = True | False
+
+function negb (b:Bool) : Bool
+{
+ match b
+ case True => False
+ case False => True
+}
+
+function andb (b1:Bool, b2:Bool) : Bool
+{
+ match b1
+ case True => b2
+ case False => False
+}
+
+function orb (b1:Bool, b2:Bool) : Bool
+{
+ match b1
+ case True => True
+ case False => b2
+}
+
+method test_orb()
+{
+ assert orb(True, False) == True;
+ assert orb(False, False) == False;
+ assert orb(False, True) == True;
+ assert orb(True, True) == True;
+}
+
+// Exercise: 1 star (nandb)
+
+function nandb (b1:Bool, b2:Bool) : Bool
+{
+ negb(andb(b1, b2))
+}
+
+method test_nandb()
+{
+ assert nandb(True, False) == True;
+ assert nandb(False, False) == True;
+ assert nandb(False, True) == True;
+ assert nandb(True, True) == False;
+}
+
+// Exercise: 1 star (andb3)
+
+function andb3 (b1:Bool, b2:Bool, b3:Bool) : Bool
+{
+ andb(andb(b1, b2), b3)
+}
+
+method test_andb3()
+{
+ assert andb3(True, True, True) == True;
+ assert andb3(False, True, True) == False;
+ assert andb3(True, False, True) == False;
+ assert andb3(True, True, False) == False;
+}
+
+// Function Types
+
+// Numbers
+
+datatype Nat =
+ O
+ | S(Nat)
+
+// Note, in order to refer to the function pred as Playground1.pred outside the current
+// module, the function must be declared "static". This will change in a near-future
+// release of Dafny.
+static function pred (n : Nat) : Nat
+{
+ match n
+ case O => O
+ case S(n') => n'
+}
+
+function minustwo (n : Nat) : Nat
+{
+ match n
+ case O => O
+ case S(nn) =>
+ // Note, Dafny currently does not support nested patterns in match expressions, but
+ // this will change soon.
+ match nn
+ case O => O
+ case S(n') => n'
+}
+
+function evenb (n:Nat) : Bool
+{
+ match n
+ case O => True
+ case S(nn) =>
+ match nn
+ case O => False
+ case S(n') => evenb(n')
+}
+
+function oddb (n:Nat) : Bool
+{
+ negb(evenb(n))
+}
+
+method test_oddb()
+{
+ assert oddb(S(O)) == True;
+ assert oddb(S(S(S(S(O))))) == False;
+}
+
+function plus (n : Nat, m : Nat) : Nat
+{
+ match n
+ case O => m
+ case S(n') => S(plus(n', m))
+}
+
+method test_plus()
+{
+ assert plus(S(S(S(O))), S(S(O))) == S(S(S(S(S(O)))));
+}
+
+function mult (n: Nat, m: Nat) : Nat
+{
+ match n
+ case O => O
+ case S(n') => plus(m, mult(n', m))
+}
+
+method test_mult()
+{
+ var n3 := S(S(S(O)));
+ var n9 := S(S(S(S(S(S(S(S(S(O)))))))));
+ assert mult(n3, n3) == n9;
+}
+
+function minus (n: Nat, m: Nat) : Nat
+{
+ match n
+ case O => O
+ case S(n') =>
+ match m
+ case O => n
+ case S(m') => minus(n', m')
+}
+
+function exp (base: Nat, power: Nat) : Nat
+{
+ match power
+ case O => S(O)
+ case S(p) => mult(base, exp(base, p))
+}
+
+// Exercise: 1 star (factorial)
+
+function factorial(n: Nat): Nat
+{
+ match n
+ case O => S(O)
+ case S(n') => mult(n, factorial(n'))
+}
+
+method test_factorial1()
+{
+ var n2 := S(S(O));
+ var n3 := S(n2);
+ var n5 := S(S(n3));
+ var n6 := S(n5);
+ assert factorial(n3) == n6;
+
+ var n10 := S(S(S(S(n6))));
+ var n12 := S(S(n10));
+
+ // proving that 5! == 10*12 takes some effort, because the computation fuel runs out
+ calc {
+ factorial(n5);
+ { mult_lemma(n2, n6); }
+ mult(n5, plus(plus(n6, n6), plus(plus(n6, n6), O)));
+ { mult_lemma(n5, plus(n6, n6)); }
+ mult(n10, n12);
+ }
+}
+
+// This lemma expresses: m*(2*n) == (2*m)*n
+lemma mult_lemma(m: Nat, n: Nat)
+ ensures mult(m, plus(n, n)) == mult(plus(m, m), n);
+{
+ match m {
+ case O =>
+ case S(m') =>
+ calc {
+ mult(m, plus(n, n));
+ plus(plus(n, n), mult(m', plus(n, n)));
+ // induction hypothesis
+ plus(plus(n, n), mult(plus(m', m'), n));
+ { assert forall a,b,c :: plus(plus(a, b), c) == plus(a, plus(b, c)); }
+ plus(n, plus(n, mult(plus(m', m'), n)));
+ mult(S(S(plus(m', m'))), n);
+ mult(S(plus(S(m'), m')), n);
+ { assert forall a,b :: S(plus(a, b)) == plus(a, S(b)); }
+ mult(plus(S(m'), S(m')), n);
+ }
+ }
+}
+
+function beq_nat (n: Nat, m: Nat) : Bool
+{
+ match n
+ case O => (
+ match m
+ case O => True
+ case S(m') => False
+ )
+ case S(n') =>
+ match m
+ case O => False
+ case S(m') => beq_nat(n', m')
+}
+
+function ble_nat (n: Nat, m: Nat) : Bool
+{
+ match n
+ case O => True
+ case S(n') =>
+ match m
+ case O => False
+ case S(m') => ble_nat(n', m')
+}
+
+method test_ble_nat1()
+{
+ var n2 := S(S(O));
+ var n4 := S(S(n2));
+ assert ble_nat(n2, n2) == True;
+ assert ble_nat(n2, n4) == True;
+ assert ble_nat(n4, n2) == False;
+}
+
+// Exercise: 2 stars (blt_nat)
+
+function blt_nat (n: Nat, m: Nat) : Bool
+{
+ andb(ble_nat(n, m), negb(beq_nat(n, m)))
+}
+
+method test_blt_nat1()
+{
+ var n2 := S(S(O));
+ var n4 := S(S(n2));
+ assert blt_nat(n2, n2) == False;
+ assert blt_nat(n2, n4) == True;
+ assert blt_nat(n4, n2) == False;
+}
+
+// Proof by Simplification
+
+lemma plus_O_n (n: Nat)
+ ensures plus(O, n) == n;
+{
+}
+
+lemma plus_1_l (n: Nat)
+ ensures plus(S(O), n) == S(n);
+{
+}
+
+lemma mult_0_l (n: Nat)
+ ensures mult(O, n) == O;
+{
+}
+
+// Proof by Rewriting
+
+lemma plus_id_example (n: Nat, m: Nat)
+ ensures n == m ==> plus(n, n) == plus(m, m);
+{
+}
+
+// Exercise: 1 star (plus_id_exercise)
+
+lemma plus_id_exercise (n: Nat, m: Nat, o: Nat)
+ ensures n == m ==> m == o ==> plus(n, m) == plus(m, o);
+{
+}
+
+lemma mult_0_plus (n: Nat, m: Nat)
+ ensures mult(plus(O, n), m) == mult(n, m);
+{
+}
+
+// Exercise: 2 stars (mult_S_1)
+
+lemma mult_S_1 (n: Nat, m: Nat)
+ ensures m == S(n) ==> mult(m, plus(S(O), n)) == mult(m, m);
+{
+}
+
+
+// Proof by Case Analysis
+
+lemma plus_1_neq_0_firsttry (n: Nat)
+ ensures beq_nat(plus(n, S(O)), O) == False;
+{
+}
+
+lemma plus_1_neq_0 (n: Nat)
+ ensures beq_nat(plus(n, S(O)), O) == False;
+{
+}
+
+lemma negb_involutive (b: Bool)
+ ensures negb(negb(b)) == b;
+{
+}
+
+// Exercise: 1 star (zero_nbeq_plus_1)
+
+lemma zero_nbeq_plus_1 (n: Nat)
+ ensures beq_nat(O, plus(n, S(O))) == False;
+{
+}
+
+// More Exercises
+
+// Exercise: 2 stars (boolean functions)
+
+// Since Dafny currently does not allow functions as parameters, we instead declare
+// a global function f for use in the following lemmas. Since f is given no body,
+// it will be treated as an uninterpreted function.
+function f(x: Bool): Bool
+// Note: If you want to compile and run the program, as suggested above in method
+// test_next_weekday, then you must supply some body for f. Here is one way to do
+// that:
+// { x }
+
+lemma identity_fn_applied_twice(b: Bool)
+ requires forall x :: f(x) == x;
+ ensures f(f(b)) == b;
+{
+}
+
+
+lemma negation_fn_applied_twice(b: Bool)
+ requires forall x :: f(x) == negb(x);
+ ensures f(f(b)) == b;
+{
+}
+
+// Exercise: 2 stars (andb_eq_orb)
+
+lemma andb_true (b : Bool)
+ ensures andb(True, b) == b;
+{
+}
+
+lemma orb_false (b : Bool)
+ ensures orb(False, b) == b;
+{
+}
+
+lemma andb_eq_orb (b: Bool, c: Bool)
+ ensures andb(b, c) == orb(b, c) ==> b == c;
+{
+}
+
+// Exercise: 3 stars (binary)
+
+datatype bin = Zero | Twice(bin) | TwicePlusOne(bin)
+
+function increment(b: bin): bin
+{
+ match b
+ case Zero => TwicePlusOne(Zero)
+ case Twice(b') => TwicePlusOne(b')
+ case TwicePlusOne(b') => Twice(increment(b'))
+}
+
+function BinToUnary(b: bin): Nat
+{
+ match b
+ case Zero => O
+ case Twice(b') =>
+ var t := BinToUnary(b');
+ plus(t, t)
+ case TwicePlusOne(b') =>
+ var t := BinToUnary(b');
+ plus(t, plus(t, S(O)))
+}
+
+method test_bin()
+{
+ var n6 := S(S(S(S(S(S(O))))));
+ var n13 := S(S(S(S(S(S(S(n6)))))));
+ assert BinToUnary(Twice(TwicePlusOne(TwicePlusOne(Zero)))) == n6;
+ assert BinToUnary(TwicePlusOne(Twice(TwicePlusOne(TwicePlusOne(Zero))))) == n13;
+}
+
+method test_increment()
+{
+ var b13 := TwicePlusOne(Twice(TwicePlusOne(TwicePlusOne(Zero))));
+ var n13 := S(S(S(S(S(S(S(S(S(S(S(S(S(O)))))))))))));
+ var n14 := S(n13);
+
+ assert increment(Twice(TwicePlusOne(TwicePlusOne(Zero)))) == TwicePlusOne(TwicePlusOne(TwicePlusOne(Zero)));
+ assert increment(b13) == Twice(TwicePlusOne(TwicePlusOne(TwicePlusOne(Zero))));
+
+ assert BinToUnary(increment(b13)) == plus(BinToUnary(b13), S(O));
+}
+
+// Optional Material
+
+// [Fixpoint]s and Structural Recursion
+
+function plus' (n : Nat, m : Nat) : Nat
+{
+ match n
+ case O => m
+ case S(n') => S(plus'(n', m))
+}
+
+// Exercise: 2 stars, optional (decreasing)
+
+function decreasingOnTwo (n: Nat, m: Nat, p: Nat) : Nat
+{
+ match p
+ case O => (
+ match n
+ case O => O
+ case S(n') => decreasingOnTwo(n', m, S(O))
+ )
+ case S(_) =>
+ match m
+ case O => S(O)
+ case S(m') => decreasingOnTwo(n, m', O)
+}
diff --git a/Test/dafny4/runtest.bat b/Test/dafny4/runtest.bat
index a9fee544..6d76c23b 100644
--- a/Test/dafny4/runtest.bat
+++ b/Test/dafny4/runtest.bat
@@ -4,4 +4,4 @@ setlocal
set BINARIES=..\..\Binaries
set DAFNY_EXE=%BINARIES%\Dafny.exe
-%DAFNY_EXE% /compile:0 /verifySeparately /dprint:out.dfy.tmp %* CoqArt-InsertionSort.dfy GHC-MergeSort.dfy Fstar-QuickSort.dfy Primes.dfy KozenSilva.dfy
+%DAFNY_EXE% /compile:0 /verifySeparately /dprint:out.dfy.tmp %* CoqArt-InsertionSort.dfy GHC-MergeSort.dfy Fstar-QuickSort.dfy Primes.dfy KozenSilva.dfy SoftwareFoundations-Basics.dfy