summaryrefslogtreecommitdiff
path: root/theories7/Reals/Raxioms.v
blob: caf8524cd9e9847dddeae574cc4971bcfaba055d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Raxioms.v,v 1.2.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)

(*********************************************************)
(**    Axiomatisation of the classical reals             *)
(*********************************************************)

Require Export ZArith_base.
V7only [
Require Export Rsyntax.
Import R_scope.
].
Open Local Scope R_scope.

V7only [
(*********************************************************)
(*   Compatibility                                       *)
(*********************************************************)
Notation sumboolT := Specif.sumbool.
Notation leftT := Specif.left.
Notation rightT := Specif.right.
Notation sumorT := Specif.sumor.
Notation inleftT := Specif.inleft.
Notation inrightT := Specif.inright.
Notation sigTT := Specif.sigT.
Notation existTT := Specif.existT.
Notation SigT := Specif.sigT.
].

(*********************************************************)
(*               Field axioms                            *)
(*********************************************************)

(*********************************************************)
(**      Addition                                        *)
(*********************************************************)

(**********)
Axiom Rplus_sym:(r1,r2:R)``r1+r2==r2+r1``.
Hints Resolve Rplus_sym : real.

(**********)
Axiom Rplus_assoc:(r1,r2,r3:R)``(r1+r2)+r3==r1+(r2+r3)``.
Hints Resolve Rplus_assoc : real.

(**********)
Axiom Rplus_Ropp_r:(r:R)``r+(-r)==0``.
Hints Resolve Rplus_Ropp_r : real v62.

(**********)
Axiom Rplus_Ol:(r:R)``0+r==r``.
Hints Resolve Rplus_Ol : real.

(***********************************************************)       
(**       Multiplication                                   *)
(***********************************************************)

(**********)
Axiom Rmult_sym:(r1,r2:R)``r1*r2==r2*r1``.
Hints Resolve Rmult_sym : real v62. 

(**********)
Axiom Rmult_assoc:(r1,r2,r3:R)``(r1*r2)*r3==r1*(r2*r3)``.
Hints Resolve Rmult_assoc : real v62.

(**********)
Axiom Rinv_l:(r:R)``r<>0``->``(/r)*r==1``.
Hints Resolve Rinv_l : real.

(**********)
Axiom Rmult_1l:(r:R)``1*r==r``.
Hints Resolve Rmult_1l : real.

(**********)
Axiom R1_neq_R0:``1<>0``.
Hints Resolve R1_neq_R0 : real.

(*********************************************************)
(**      Distributivity                                  *)
(*********************************************************)

(**********)
Axiom Rmult_Rplus_distr:(r1,r2,r3:R)``r1*(r2+r3)==(r1*r2)+(r1*r3)``.
Hints Resolve Rmult_Rplus_distr : real v62.

(*********************************************************)
(**      Order axioms                                    *)
(*********************************************************)
(*********************************************************)
(**      Total Order                                     *)
(*********************************************************)

(**********)
Axiom total_order_T:(r1,r2:R)(sumorT (sumboolT ``r1<r2`` r1==r2) ``r1>r2``).

(*********************************************************)
(**      Lower                                           *)
(*********************************************************)

(**********)
Axiom Rlt_antisym:(r1,r2:R)``r1<r2`` -> ~ ``r2<r1``.

(**********)
Axiom Rlt_trans:(r1,r2,r3:R)
  ``r1<r2``->``r2<r3``->``r1<r3``.

(**********)
Axiom Rlt_compatibility:(r,r1,r2:R)``r1<r2``->``r+r1<r+r2``.

(**********)
Axiom Rlt_monotony:(r,r1,r2:R)``0<r``->``r1<r2``->``r*r1<r*r2``.

Hints Resolve Rlt_antisym Rlt_compatibility Rlt_monotony : real.

(**********************************************************) 
(**      Injection from N to R                            *)
(**********************************************************)

(**********)
Fixpoint INR [n:nat]:R:=(Cases n of
                          O      => ``0``
                         |(S O)  => ``1``
                         |(S n)  => ``(INR n)+1``
                        end).  
Arguments Scope INR [nat_scope].


(**********************************************************) 
(**      Injection from [Z] to [R]                        *)
(**********************************************************)

(**********)
Definition IZR:Z->R:=[z:Z](Cases z of
                         ZERO      => ``0``
                        |(POS n) => (INR (convert n))
                        |(NEG n) => ``-(INR (convert n))``
                           end).  
Arguments Scope IZR [Z_scope].

(**********************************************************)
(**      [R] Archimedian                                  *)
(**********************************************************)

(**********)
Axiom archimed:(r:R)``(IZR (up r)) > r``/\``(IZR (up r))-r <= 1``.

(**********************************************************)
(**      [R] Complete                                     *)
(**********************************************************)

(**********)
Definition is_upper_bound:=[E:R->Prop][m:R](x:R)(E x)->``x <= m``.

(**********)
Definition bound:=[E:R->Prop](ExT [m:R](is_upper_bound E m)).

(**********)
Definition is_lub:=[E:R->Prop][m:R]
    (is_upper_bound E m)/\(b:R)(is_upper_bound E b)->``m <= b``.

(**********)
Axiom complet:(E:R->Prop)(bound E)->
              (ExT [x:R] (E x))->
              (sigTT R [m:R](is_lub E m)).