(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 0``->``(/r)*r==1``. Hints Resolve Rinv_l : real. (**********) Axiom Rmult_1l:(r:R)``1*r==r``. Hints Resolve Rmult_1l : real. (**********) Axiom R1_neq_R0:``1<>0``. Hints Resolve R1_neq_R0 : real. (*********************************************************) (** Distributivity *) (*********************************************************) (**********) Axiom Rmult_Rplus_distr:(r1,r2,r3:R)``r1*(r2+r3)==(r1*r2)+(r1*r3)``. Hints Resolve Rmult_Rplus_distr : real v62. (*********************************************************) (** Order axioms *) (*********************************************************) (*********************************************************) (** Total Order *) (*********************************************************) (**********) Axiom total_order_T:(r1,r2:R)(sumorT (sumboolT ``r1r2``). (*********************************************************) (** Lower *) (*********************************************************) (**********) Axiom Rlt_antisym:(r1,r2:R)``r1 ~ ``r2``r2``r1``r+r1``r1``r*r1 ``0`` |(S O) => ``1`` |(S n) => ``(INR n)+1`` end). Arguments Scope INR [nat_scope]. (**********************************************************) (** Injection from [Z] to [R] *) (**********************************************************) (**********) Definition IZR:Z->R:=[z:Z](Cases z of ZERO => ``0`` |(POS n) => (INR (convert n)) |(NEG n) => ``-(INR (convert n))`` end). Arguments Scope IZR [Z_scope]. (**********************************************************) (** [R] Archimedian *) (**********************************************************) (**********) Axiom archimed:(r:R)``(IZR (up r)) > r``/\``(IZR (up r))-r <= 1``. (**********************************************************) (** [R] Complete *) (**********************************************************) (**********) Definition is_upper_bound:=[E:R->Prop][m:R](x:R)(E x)->``x <= m``. (**********) Definition bound:=[E:R->Prop](ExT [m:R](is_upper_bound E m)). (**********) Definition is_lub:=[E:R->Prop][m:R] (is_upper_bound E m)/\(b:R)(is_upper_bound E b)->``m <= b``. (**********) Axiom complet:(E:R->Prop)(bound E)-> (ExT [x:R] (E x))-> (sigTT R [m:R](is_lub E m)).