summaryrefslogtreecommitdiff
path: root/theories7/Reals/Ranalysis4.v
blob: 061854dcf94521cfd2e4921f0b74dbc8a1edc071 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Ranalysis4.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)

Require Rbase.
Require Rfunctions.
Require SeqSeries.
Require Rtrigo.
Require Ranalysis1.
Require Ranalysis3.
Require Exp_prop.
V7only [Import R_scope.]. Open Local Scope R_scope.

(**********)
Lemma derivable_pt_inv : (f:R->R;x:R) ``(f x)<>0`` -> (derivable_pt f x) -> (derivable_pt (inv_fct f) x).
Intros; Cut (derivable_pt (div_fct (fct_cte R1) f) x) -> (derivable_pt (inv_fct f) x).
Intro; Apply X0.
Apply derivable_pt_div.
Apply derivable_pt_const.
Assumption.
Assumption.
Unfold div_fct inv_fct fct_cte; Intro; Elim X0; Intros; Unfold derivable_pt; Apply Specif.existT with x0; Unfold derivable_pt_abs; Unfold derivable_pt_lim; Unfold derivable_pt_abs in p; Unfold derivable_pt_lim in p; Intros; Elim (p eps H0); Intros; Exists x1; Intros; Unfold Rdiv in H1; Unfold Rdiv; Rewrite <- (Rmult_1l ``/(f x)``); Rewrite <- (Rmult_1l ``/(f (x+h))``).
Apply H1; Assumption.
Qed.

(**********)
Lemma pr_nu_var : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) f==g -> (derive_pt f x pr1) == (derive_pt g x pr2).
Unfold derivable_pt derive_pt; Intros.
Elim pr1; Intros.
Elim pr2; Intros.
Simpl.
Rewrite H in p.
Apply unicite_limite with g x; Assumption.
Qed.

(**********)
Lemma pr_nu_var2 : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) ((h:R)(f h)==(g h)) -> (derive_pt f x pr1) == (derive_pt g x pr2).
Unfold derivable_pt derive_pt; Intros.
Elim pr1; Intros.
Elim pr2; Intros.
Simpl.
Assert H0 := (unicite_step2 ? ? ? p). 
Assert H1 := (unicite_step2 ? ? ? p0). 
Cut (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h <> 0`` x1 ``0``).
Intro; Assert H3 := (unicite_step1 ? ? ? ? H0 H2). 
Assumption.
Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Unfold limit1_in in H1; Unfold limit_in in H1; Unfold dist in H1; Simpl in H1; Unfold R_dist in H1.
Intros; Elim (H1 eps H2); Intros.
Elim H3; Intros.
Exists x2.
Split.
Assumption.
Intros; Do 2 Rewrite H; Apply H5; Assumption.
Qed.

(**********)
Lemma derivable_inv : (f:R->R) ((x:R)``(f x)<>0``)->(derivable f)->(derivable (inv_fct f)).
Intros.
Unfold derivable; Intro.
Apply derivable_pt_inv.
Apply (H x).
Apply (X x).
Qed.

Lemma derive_pt_inv : (f:R->R;x:R;pr:(derivable_pt f x);na:``(f x)<>0``) (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) == ``-(derive_pt f x pr)/(Rsqr (f x))``.
Intros; Replace (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) with (derive_pt (div_fct (fct_cte R1) f) x (derivable_pt_div (fct_cte R1) f x (derivable_pt_const R1 x) pr na)).
Rewrite derive_pt_div; Rewrite derive_pt_const; Unfold fct_cte; Rewrite Rmult_Ol; Rewrite Rmult_1r; Unfold Rminus; Rewrite Rplus_Ol; Reflexivity.
Apply pr_nu_var2.
Intro; Unfold div_fct fct_cte inv_fct.
Unfold Rdiv; Ring.
Qed.

(* Rabsolu *)
Lemma Rabsolu_derive_1 : (x:R) ``0<x`` -> (derivable_pt_lim Rabsolu x ``1``).
Intros.
Unfold derivable_pt_lim; Intros.
Exists (mkposreal x H); Intros.
Rewrite (Rabsolu_right x).
Rewrite (Rabsolu_right ``x+h``).
Rewrite Rplus_sym.
Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r.
Rewrite Rplus_Or; Unfold Rdiv; Rewrite <- Rinv_r_sym.
Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H0.
Apply H1.
Apply Rle_sym1.
Case (case_Rabsolu h); Intro.
Rewrite (Rabsolu_left h r) in H2.
Left; Rewrite Rplus_sym; Apply Rlt_anti_compatibility with ``-h``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H2.
Apply ge0_plus_ge0_is_ge0.
Left; Apply H.
Apply Rle_sym2; Apply r.
Left; Apply H.
Qed.

Lemma Rabsolu_derive_2 : (x:R) ``x<0`` -> (derivable_pt_lim Rabsolu x ``-1``).
Intros.
Unfold derivable_pt_lim; Intros.
Cut ``0< -x``.
Intro; Exists (mkposreal ``-x`` H1); Intros.
Rewrite (Rabsolu_left x).
Rewrite (Rabsolu_left ``x+h``).
Rewrite Rplus_sym.
Rewrite Ropp_distr1.
Unfold Rminus; Rewrite Ropp_Ropp; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l.
Rewrite Rplus_Or; Unfold Rdiv.
Rewrite Ropp_mul1.
Rewrite <- Rinv_r_sym.
Rewrite Ropp_Ropp; Rewrite Rplus_Ropp_l; Rewrite Rabsolu_R0; Apply H0.
Apply H2.
Case (case_Rabsolu h); Intro.
Apply Ropp_Rlt.
Rewrite Ropp_O; Rewrite Ropp_distr1; Apply gt0_plus_gt0_is_gt0.
Apply H1.
Apply Rgt_RO_Ropp; Apply r.
Rewrite (Rabsolu_right h r) in H3.
Apply Rlt_anti_compatibility with ``-x``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H3.
Apply H.
Apply Rgt_RO_Ropp; Apply H.
Qed.

(* Rabsolu is derivable for all x <> 0 *)
Lemma derivable_pt_Rabsolu : (x:R) ``x<>0`` -> (derivable_pt Rabsolu x).
Intros.
Case (total_order_T x R0); Intro.
Elim s; Intro.
Unfold derivable_pt; Apply Specif.existT with ``-1``.
Apply (Rabsolu_derive_2 x a).
Elim H; Exact b.
Unfold derivable_pt; Apply Specif.existT with ``1``.
Apply (Rabsolu_derive_1 x r).
Qed.

(* Rabsolu is continuous for all x *)
Lemma continuity_Rabsolu : (continuity Rabsolu).
Unfold continuity; Intro.
Case (Req_EM x R0); Intro.
Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Exists eps; Split.
Apply H0.
Intros; Rewrite H; Rewrite Rabsolu_R0; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Elim H1; Intros; Rewrite H in H3; Unfold Rminus in H3; Rewrite Ropp_O in H3; Rewrite Rplus_Or in H3; Apply H3.
Apply derivable_continuous_pt; Apply (derivable_pt_Rabsolu x H).
Qed.

(* Finite sums : Sum a_k x^k *)
Lemma continuity_finite_sum : (An:nat->R;N:nat) (continuity [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)).
Intros; Unfold continuity; Intro.
Induction N.
Simpl.
Apply continuity_pt_const.
Unfold constant; Intros; Reflexivity.
Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``).
Apply continuity_pt_plus.
Apply HrecN.
Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))).
Apply continuity_pt_scal.
Apply derivable_continuous_pt.
Apply derivable_pt_pow.
Reflexivity.
Reflexivity.
Qed.

Lemma derivable_pt_lim_fs : (An:nat->R;x:R;N:nat) (lt O N) -> (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N))).
Intros; Induction N.
Elim (lt_n_n ? H).
Cut N=O\/(lt O N).
Intro; Elim H0; Intro.
Rewrite H1.
Simpl.
Replace [y:R]``(An O)*1+(An (S O))*(y*1)`` with (plus_fct (fct_cte ``(An O)*1``) (mult_real_fct ``(An (S O))`` (mult_fct id (fct_cte R1)))).
Replace ``1*(An (S O))*1`` with ``0+(An (S O))*(1*(fct_cte R1 x)+(id x)*0)``.
Apply derivable_pt_lim_plus.
Apply derivable_pt_lim_const.
Apply derivable_pt_lim_scal.
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_const.
Unfold fct_cte id; Ring.
Reflexivity.
Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``).
Replace (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))) with (Rplus (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) ``(An (S N))*((INR (S (pred (S N))))*(pow x (pred (S N))))``).
Apply derivable_pt_lim_plus.
Apply HrecN.
Assumption.
Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))).
Apply derivable_pt_lim_scal.
Replace (pred (S N)) with N; [Idtac | Reflexivity].
Pattern 3 N; Replace N with (pred (S N)).
Apply derivable_pt_lim_pow.
Reflexivity.
Reflexivity.
Cut (pred (S N)) = (S (pred N)).
Intro; Rewrite H2.
Rewrite tech5.
Apply Rplus_plus_r.
Rewrite <- H2.
Replace (pred (S N)) with N; [Idtac | Reflexivity].
Ring.
Simpl.
Apply S_pred with O; Assumption.
Unfold plus_fct.
Simpl; Reflexivity.
Inversion H.
Left; Reflexivity.
Right; Apply lt_le_trans with (1); [Apply lt_O_Sn | Assumption].
Qed.

Lemma derivable_pt_lim_finite_sum : (An:(nat->R); x:R; N:nat) (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (Cases N of O => R0 | _ => (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) end)).
Intros.
Induction N.
Simpl.
Rewrite Rmult_1r.
Replace [_:R]``(An O)`` with (fct_cte (An O)); [Apply derivable_pt_lim_const | Reflexivity].
Apply derivable_pt_lim_fs; Apply lt_O_Sn.
Qed.

Lemma derivable_pt_finite_sum : (An:nat->R;N:nat;x:R) (derivable_pt [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x).
Intros.
Unfold derivable_pt.
Assert H := (derivable_pt_lim_finite_sum An x N).
Induction N.
Apply Specif.existT with R0; Apply H.
Apply Specif.existT with (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))); Apply H.
Qed.

Lemma derivable_finite_sum : (An:nat->R;N:nat) (derivable [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)).
Intros; Unfold derivable; Intro; Apply derivable_pt_finite_sum.
Qed.

(* Regularity of hyperbolic functions *)
Lemma derivable_pt_lim_cosh : (x:R) (derivable_pt_lim cosh x ``(sinh x)``).
Intro.
Unfold cosh sinh; Unfold Rdiv.
Replace [x0:R]``((exp x0)+(exp ( -x0)))*/2`` with (mult_fct (plus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity].
Replace ``((exp x)-(exp ( -x)))*/2`` with ``((exp x)+((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((plus_fct exp (comp exp (opp_fct id))) x)*0``. 
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_plus.
Apply derivable_pt_lim_exp.
Apply derivable_pt_lim_comp.
Apply derivable_pt_lim_opp.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_exp.
Apply derivable_pt_lim_const.
Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring.
Qed.

Lemma derivable_pt_lim_sinh : (x:R) (derivable_pt_lim sinh x ``(cosh x)``).
Intro.
Unfold cosh sinh; Unfold Rdiv.
Replace [x0:R]``((exp x0)-(exp ( -x0)))*/2`` with (mult_fct (minus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity].
Replace ``((exp x)+(exp ( -x)))*/2`` with ``((exp x)-((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((minus_fct exp (comp exp (opp_fct id))) x)*0``. 
Apply derivable_pt_lim_mult.
Apply derivable_pt_lim_minus.
Apply derivable_pt_lim_exp.
Apply derivable_pt_lim_comp.
Apply derivable_pt_lim_opp.
Apply derivable_pt_lim_id.
Apply derivable_pt_lim_exp.
Apply derivable_pt_lim_const.
Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring.
Qed.

Lemma derivable_pt_exp : (x:R) (derivable_pt exp x).
Intro.
Unfold derivable_pt.
Apply Specif.existT with (exp x).
Apply derivable_pt_lim_exp.
Qed.

Lemma derivable_pt_cosh : (x:R) (derivable_pt cosh x).
Intro.
Unfold derivable_pt.
Apply Specif.existT with (sinh x).
Apply derivable_pt_lim_cosh.
Qed.

Lemma derivable_pt_sinh : (x:R) (derivable_pt sinh x).
Intro.
Unfold derivable_pt.
Apply Specif.existT with (cosh x).
Apply derivable_pt_lim_sinh.
Qed.

Lemma derivable_exp : (derivable exp).
Unfold derivable; Apply derivable_pt_exp.
Qed.

Lemma derivable_cosh : (derivable cosh).
Unfold derivable; Apply derivable_pt_cosh.
Qed.

Lemma derivable_sinh : (derivable sinh).
Unfold derivable; Apply derivable_pt_sinh.
Qed.

Lemma derive_pt_exp : (x:R) (derive_pt exp x (derivable_pt_exp x))==(exp x).
Intro; Apply derive_pt_eq_0.
Apply derivable_pt_lim_exp.
Qed.

Lemma derive_pt_cosh : (x:R) (derive_pt cosh x (derivable_pt_cosh x))==(sinh x).
Intro; Apply derive_pt_eq_0.
Apply derivable_pt_lim_cosh.
Qed.

Lemma derive_pt_sinh : (x:R) (derive_pt sinh x (derivable_pt_sinh x))==(cosh x).
Intro; Apply derive_pt_eq_0.
Apply derivable_pt_lim_sinh.
Qed.