(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R;x:R) ``(f x)<>0`` -> (derivable_pt f x) -> (derivable_pt (inv_fct f) x). Intros; Cut (derivable_pt (div_fct (fct_cte R1) f) x) -> (derivable_pt (inv_fct f) x). Intro; Apply X0. Apply derivable_pt_div. Apply derivable_pt_const. Assumption. Assumption. Unfold div_fct inv_fct fct_cte; Intro; Elim X0; Intros; Unfold derivable_pt; Apply Specif.existT with x0; Unfold derivable_pt_abs; Unfold derivable_pt_lim; Unfold derivable_pt_abs in p; Unfold derivable_pt_lim in p; Intros; Elim (p eps H0); Intros; Exists x1; Intros; Unfold Rdiv in H1; Unfold Rdiv; Rewrite <- (Rmult_1l ``/(f x)``); Rewrite <- (Rmult_1l ``/(f (x+h))``). Apply H1; Assumption. Qed. (**********) Lemma pr_nu_var : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) f==g -> (derive_pt f x pr1) == (derive_pt g x pr2). Unfold derivable_pt derive_pt; Intros. Elim pr1; Intros. Elim pr2; Intros. Simpl. Rewrite H in p. Apply unicite_limite with g x; Assumption. Qed. (**********) Lemma pr_nu_var2 : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) ((h:R)(f h)==(g h)) -> (derive_pt f x pr1) == (derive_pt g x pr2). Unfold derivable_pt derive_pt; Intros. Elim pr1; Intros. Elim pr2; Intros. Simpl. Assert H0 := (unicite_step2 ? ? ? p). Assert H1 := (unicite_step2 ? ? ? p0). Cut (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h <> 0`` x1 ``0``). Intro; Assert H3 := (unicite_step1 ? ? ? ? H0 H2). Assumption. Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Unfold limit1_in in H1; Unfold limit_in in H1; Unfold dist in H1; Simpl in H1; Unfold R_dist in H1. Intros; Elim (H1 eps H2); Intros. Elim H3; Intros. Exists x2. Split. Assumption. Intros; Do 2 Rewrite H; Apply H5; Assumption. Qed. (**********) Lemma derivable_inv : (f:R->R) ((x:R)``(f x)<>0``)->(derivable f)->(derivable (inv_fct f)). Intros. Unfold derivable; Intro. Apply derivable_pt_inv. Apply (H x). Apply (X x). Qed. Lemma derive_pt_inv : (f:R->R;x:R;pr:(derivable_pt f x);na:``(f x)<>0``) (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) == ``-(derive_pt f x pr)/(Rsqr (f x))``. Intros; Replace (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) with (derive_pt (div_fct (fct_cte R1) f) x (derivable_pt_div (fct_cte R1) f x (derivable_pt_const R1 x) pr na)). Rewrite derive_pt_div; Rewrite derive_pt_const; Unfold fct_cte; Rewrite Rmult_Ol; Rewrite Rmult_1r; Unfold Rminus; Rewrite Rplus_Ol; Reflexivity. Apply pr_nu_var2. Intro; Unfold div_fct fct_cte inv_fct. Unfold Rdiv; Ring. Qed. (* Rabsolu *) Lemma Rabsolu_derive_1 : (x:R) ``0 (derivable_pt_lim Rabsolu x ``1``). Intros. Unfold derivable_pt_lim; Intros. Exists (mkposreal x H); Intros. Rewrite (Rabsolu_right x). Rewrite (Rabsolu_right ``x+h``). Rewrite Rplus_sym. Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r. Rewrite Rplus_Or; Unfold Rdiv; Rewrite <- Rinv_r_sym. Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H0. Apply H1. Apply Rle_sym1. Case (case_Rabsolu h); Intro. Rewrite (Rabsolu_left h r) in H2. Left; Rewrite Rplus_sym; Apply Rlt_anti_compatibility with ``-h``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H2. Apply ge0_plus_ge0_is_ge0. Left; Apply H. Apply Rle_sym2; Apply r. Left; Apply H. Qed. Lemma Rabsolu_derive_2 : (x:R) ``x<0`` -> (derivable_pt_lim Rabsolu x ``-1``). Intros. Unfold derivable_pt_lim; Intros. Cut ``0< -x``. Intro; Exists (mkposreal ``-x`` H1); Intros. Rewrite (Rabsolu_left x). Rewrite (Rabsolu_left ``x+h``). Rewrite Rplus_sym. Rewrite Ropp_distr1. Unfold Rminus; Rewrite Ropp_Ropp; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l. Rewrite Rplus_Or; Unfold Rdiv. Rewrite Ropp_mul1. Rewrite <- Rinv_r_sym. Rewrite Ropp_Ropp; Rewrite Rplus_Ropp_l; Rewrite Rabsolu_R0; Apply H0. Apply H2. Case (case_Rabsolu h); Intro. Apply Ropp_Rlt. Rewrite Ropp_O; Rewrite Ropp_distr1; Apply gt0_plus_gt0_is_gt0. Apply H1. Apply Rgt_RO_Ropp; Apply r. Rewrite (Rabsolu_right h r) in H3. Apply Rlt_anti_compatibility with ``-x``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H3. Apply H. Apply Rgt_RO_Ropp; Apply H. Qed. (* Rabsolu is derivable for all x <> 0 *) Lemma derivable_pt_Rabsolu : (x:R) ``x<>0`` -> (derivable_pt Rabsolu x). Intros. Case (total_order_T x R0); Intro. Elim s; Intro. Unfold derivable_pt; Apply Specif.existT with ``-1``. Apply (Rabsolu_derive_2 x a). Elim H; Exact b. Unfold derivable_pt; Apply Specif.existT with ``1``. Apply (Rabsolu_derive_1 x r). Qed. (* Rabsolu is continuous for all x *) Lemma continuity_Rabsolu : (continuity Rabsolu). Unfold continuity; Intro. Case (Req_EM x R0); Intro. Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Exists eps; Split. Apply H0. Intros; Rewrite H; Rewrite Rabsolu_R0; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Elim H1; Intros; Rewrite H in H3; Unfold Rminus in H3; Rewrite Ropp_O in H3; Rewrite Rplus_Or in H3; Apply H3. Apply derivable_continuous_pt; Apply (derivable_pt_Rabsolu x H). Qed. (* Finite sums : Sum a_k x^k *) Lemma continuity_finite_sum : (An:nat->R;N:nat) (continuity [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)). Intros; Unfold continuity; Intro. Induction N. Simpl. Apply continuity_pt_const. Unfold constant; Intros; Reflexivity. Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``). Apply continuity_pt_plus. Apply HrecN. Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))). Apply continuity_pt_scal. Apply derivable_continuous_pt. Apply derivable_pt_pow. Reflexivity. Reflexivity. Qed. Lemma derivable_pt_lim_fs : (An:nat->R;x:R;N:nat) (lt O N) -> (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N))). Intros; Induction N. Elim (lt_n_n ? H). Cut N=O\/(lt O N). Intro; Elim H0; Intro. Rewrite H1. Simpl. Replace [y:R]``(An O)*1+(An (S O))*(y*1)`` with (plus_fct (fct_cte ``(An O)*1``) (mult_real_fct ``(An (S O))`` (mult_fct id (fct_cte R1)))). Replace ``1*(An (S O))*1`` with ``0+(An (S O))*(1*(fct_cte R1 x)+(id x)*0)``. Apply derivable_pt_lim_plus. Apply derivable_pt_lim_const. Apply derivable_pt_lim_scal. Apply derivable_pt_lim_mult. Apply derivable_pt_lim_id. Apply derivable_pt_lim_const. Unfold fct_cte id; Ring. Reflexivity. Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``). Replace (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))) with (Rplus (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) ``(An (S N))*((INR (S (pred (S N))))*(pow x (pred (S N))))``). Apply derivable_pt_lim_plus. Apply HrecN. Assumption. Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))). Apply derivable_pt_lim_scal. Replace (pred (S N)) with N; [Idtac | Reflexivity]. Pattern 3 N; Replace N with (pred (S N)). Apply derivable_pt_lim_pow. Reflexivity. Reflexivity. Cut (pred (S N)) = (S (pred N)). Intro; Rewrite H2. Rewrite tech5. Apply Rplus_plus_r. Rewrite <- H2. Replace (pred (S N)) with N; [Idtac | Reflexivity]. Ring. Simpl. Apply S_pred with O; Assumption. Unfold plus_fct. Simpl; Reflexivity. Inversion H. Left; Reflexivity. Right; Apply lt_le_trans with (1); [Apply lt_O_Sn | Assumption]. Qed. Lemma derivable_pt_lim_finite_sum : (An:(nat->R); x:R; N:nat) (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (Cases N of O => R0 | _ => (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) end)). Intros. Induction N. Simpl. Rewrite Rmult_1r. Replace [_:R]``(An O)`` with (fct_cte (An O)); [Apply derivable_pt_lim_const | Reflexivity]. Apply derivable_pt_lim_fs; Apply lt_O_Sn. Qed. Lemma derivable_pt_finite_sum : (An:nat->R;N:nat;x:R) (derivable_pt [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x). Intros. Unfold derivable_pt. Assert H := (derivable_pt_lim_finite_sum An x N). Induction N. Apply Specif.existT with R0; Apply H. Apply Specif.existT with (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))); Apply H. Qed. Lemma derivable_finite_sum : (An:nat->R;N:nat) (derivable [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)). Intros; Unfold derivable; Intro; Apply derivable_pt_finite_sum. Qed. (* Regularity of hyperbolic functions *) Lemma derivable_pt_lim_cosh : (x:R) (derivable_pt_lim cosh x ``(sinh x)``). Intro. Unfold cosh sinh; Unfold Rdiv. Replace [x0:R]``((exp x0)+(exp ( -x0)))*/2`` with (mult_fct (plus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity]. Replace ``((exp x)-(exp ( -x)))*/2`` with ``((exp x)+((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((plus_fct exp (comp exp (opp_fct id))) x)*0``. Apply derivable_pt_lim_mult. Apply derivable_pt_lim_plus. Apply derivable_pt_lim_exp. Apply derivable_pt_lim_comp. Apply derivable_pt_lim_opp. Apply derivable_pt_lim_id. Apply derivable_pt_lim_exp. Apply derivable_pt_lim_const. Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring. Qed. Lemma derivable_pt_lim_sinh : (x:R) (derivable_pt_lim sinh x ``(cosh x)``). Intro. Unfold cosh sinh; Unfold Rdiv. Replace [x0:R]``((exp x0)-(exp ( -x0)))*/2`` with (mult_fct (minus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity]. Replace ``((exp x)+(exp ( -x)))*/2`` with ``((exp x)-((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((minus_fct exp (comp exp (opp_fct id))) x)*0``. Apply derivable_pt_lim_mult. Apply derivable_pt_lim_minus. Apply derivable_pt_lim_exp. Apply derivable_pt_lim_comp. Apply derivable_pt_lim_opp. Apply derivable_pt_lim_id. Apply derivable_pt_lim_exp. Apply derivable_pt_lim_const. Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring. Qed. Lemma derivable_pt_exp : (x:R) (derivable_pt exp x). Intro. Unfold derivable_pt. Apply Specif.existT with (exp x). Apply derivable_pt_lim_exp. Qed. Lemma derivable_pt_cosh : (x:R) (derivable_pt cosh x). Intro. Unfold derivable_pt. Apply Specif.existT with (sinh x). Apply derivable_pt_lim_cosh. Qed. Lemma derivable_pt_sinh : (x:R) (derivable_pt sinh x). Intro. Unfold derivable_pt. Apply Specif.existT with (cosh x). Apply derivable_pt_lim_sinh. Qed. Lemma derivable_exp : (derivable exp). Unfold derivable; Apply derivable_pt_exp. Qed. Lemma derivable_cosh : (derivable cosh). Unfold derivable; Apply derivable_pt_cosh. Qed. Lemma derivable_sinh : (derivable sinh). Unfold derivable; Apply derivable_pt_sinh. Qed. Lemma derive_pt_exp : (x:R) (derive_pt exp x (derivable_pt_exp x))==(exp x). Intro; Apply derive_pt_eq_0. Apply derivable_pt_lim_exp. Qed. Lemma derive_pt_cosh : (x:R) (derive_pt cosh x (derivable_pt_cosh x))==(sinh x). Intro; Apply derive_pt_eq_0. Apply derivable_pt_lim_cosh. Qed. Lemma derive_pt_sinh : (x:R) (derive_pt sinh x (derivable_pt_sinh x))==(cosh x). Intro; Apply derive_pt_eq_0. Apply derivable_pt_lim_sinh. Qed.