summaryrefslogtreecommitdiff
path: root/theories7/Reals/Cos_rel.v
blob: e29825ab5291d62e70d03f75903b51d898a9db29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
 
(*i $Id: Cos_rel.v,v 1.1.2.1 2004/07/16 19:31:32 herbelin Exp $ i*)

Require Rbase.
Require Rfunctions.
Require SeqSeries.
Require Rtrigo_def.
V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
Open Local Scope R_scope.

Definition A1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))`` N). 
 
Definition B1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow x (plus (mult (S (S O)) k) (S O)))`` N). 
 
Definition C1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))`` N). 
 
Definition Reste1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (mult (S (S O)) (S (plus l k)))))*(pow x (mult (S (S O)) (S (plus l k))))*(pow (-1) (minus N l))/(INR (fact (mult (S (S O)) (minus N l))))*(pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))) (pred N)).

Definition Reste2 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*(pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*(pow (-1) (minus N l))/(INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*(pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))) (pred N)).

Definition Reste [x,y:R] : nat -> R := [N:nat]``(Reste2 x y N)-(Reste1 x y (S N))``.

(* Here is the main result that will be used to prove that (cos (x+y))=(cos x)(cos y)-(sin x)(sin y) *)
Theorem cos_plus_form : (x,y:R;n:nat) (lt O n) -> ``(A1 x (S n))*(A1 y (S n))-(B1 x n)*(B1 y n)+(Reste x y n)``==(C1 x y (S n)). 
Intros.
Unfold A1 B1.
Rewrite (cauchy_finite [k:nat]
        ``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*
        (pow x (mult (S (S O)) k))`` [k:nat]
      ``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*
      (pow y (mult (S (S O)) k))`` (S n)).
Rewrite (cauchy_finite [k:nat]
      ``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*
      (pow x (plus (mult (S (S O)) k) (S O)))`` [k:nat]
      ``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*
      (pow y (plus (mult (S (S O)) k) (S O)))`` n H).
Unfold Reste.
Replace (sum_f_R0
   [k:nat]
      (sum_f_R0
        [l:nat]
         ``(pow ( -1) (S (plus l k)))/
         (INR (fact (mult (S (S O)) (S (plus l k)))))*
         (pow x (mult (S (S O)) (S (plus l k))))*
         ((pow ( -1) (minus (S n) l))/
         (INR (fact (mult (S (S O)) (minus (S n) l))))*
         (pow y (mult (S (S O)) (minus (S n) l))))``
        (pred (minus (S n) k))) (pred (S n))) with (Reste1 x y (S n)).
Replace (sum_f_R0
   [k:nat]
      (sum_f_R0
        [l:nat]
         ``(pow ( -1) (S (plus l k)))/
         (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
         (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
         ((pow ( -1) (minus n l))/
         (INR (fact (plus (mult (S (S O)) (minus n l)) (S O))))*
         (pow y (plus (mult (S (S O)) (minus n l)) (S O))))``
        (pred (minus n k))) (pred n)) with (Reste2 x y n).
Ring.
Replace (sum_f_R0
   [k:nat]
      (sum_f_R0
        [p:nat]
         ``(pow ( -1) p)/(INR (fact (mult (S (S O)) p)))*
         (pow x (mult (S (S O)) p))*((pow ( -1) (minus k p))/
         (INR (fact (mult (S (S O)) (minus k p))))*
         (pow y (mult (S (S O)) (minus k p))))`` k) (S n)) with (sum_f_R0 [k:nat](Rmult ``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) k) (mult (S (S O)) l))*(pow x (mult (S (S O)) l))*(pow y (mult (S (S O)) (minus k l)))`` k)) (S n)).
Pose sin_nnn := [n:nat]Cases n of O => R0 | (S p) => (Rmult ``(pow (-1) (S p))/(INR (fact (mult (S (S O)) (S p))))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) (S p)) (S (mult (S (S O)) l)))*(pow x (S (mult (S (S O)) l)))*(pow y (S (mult (S (S O)) (minus p l))))`` p)) end.
Replace (Ropp (sum_f_R0
       [k:nat]
          (sum_f_R0
            [p:nat]
             ``(pow ( -1) p)/
             (INR (fact (plus (mult (S (S O)) p) (S O))))*
             (pow x (plus (mult (S (S O)) p) (S O)))*
             ((pow ( -1) (minus k p))/
             (INR (fact (plus (mult (S (S O)) (minus k p)) (S O))))*
             (pow y (plus (mult (S (S O)) (minus k p)) (S O))))`` k)
       n)) with (sum_f_R0 sin_nnn (S n)).
Rewrite <- sum_plus.
Unfold C1.
Apply sum_eq; Intros.
Induction i.
Simpl.
Rewrite Rplus_Ol.
Replace (C O O) with R1.
Unfold Rdiv; Rewrite Rinv_R1.
Ring.
Unfold C.
Rewrite <- minus_n_n.
Simpl.
Unfold Rdiv; Rewrite Rmult_1r; Rewrite Rinv_R1; Ring.
Unfold sin_nnn.
Rewrite <- Rmult_Rplus_distr.
Apply Rmult_mult_r.
Rewrite binomial.
Pose Wn := [i0:nat]``(C (mult (S (S O)) (S i)) i0)*(pow x i0)*
         (pow y (minus (mult (S (S O)) (S i)) i0))``.
Replace (sum_f_R0
   [l:nat]
      ``(C (mult (S (S O)) (S i)) (mult (S (S O)) l))*
      (pow x (mult (S (S O)) l))*
      (pow y (mult (S (S O)) (minus (S i) l)))`` (S i)) with (sum_f_R0 [l:nat](Wn (mult (2) l)) (S i)).
Replace (sum_f_R0
     [l:nat]
        ``(C (mult (S (S O)) (S i)) (S (mult (S (S O)) l)))*
        (pow x (S (mult (S (S O)) l)))*
        (pow y (S (mult (S (S O)) (minus i l))))`` i) with (sum_f_R0 [l:nat](Wn (S (mult (2) l))) i).
Rewrite Rplus_sym.
Apply sum_decomposition.
Apply sum_eq; Intros.
Unfold Wn.
Apply Rmult_mult_r.
Replace (minus (mult (2) (S i)) (S (mult (2) i0))) with (S (mult (2) (minus i i0))).
Reflexivity.
Apply INR_eq.
Rewrite S_INR; Rewrite mult_INR.
Repeat Rewrite minus_INR.
Rewrite mult_INR; Repeat Rewrite S_INR.
Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Replace (mult (2) (S i)) with (S (S (mult (2) i))).
Apply le_n_S.
Apply le_trans with (mult (2) i).
Apply mult_le; Assumption.
Apply le_n_Sn.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Assumption.
Apply sum_eq; Intros.
Unfold Wn.
Apply Rmult_mult_r.
Replace (minus (mult (2) (S i)) (mult (2) i0)) with (mult (2) (minus (S i) i0)).
Reflexivity.
Apply INR_eq.
Rewrite mult_INR.
Repeat Rewrite minus_INR.
Rewrite mult_INR; Repeat Rewrite S_INR.
Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply mult_le; Assumption.
Assumption.
Rewrite <- (Ropp_Ropp (sum_f_R0 sin_nnn (S n))).
Apply eq_Ropp.
Replace ``-(sum_f_R0 sin_nnn (S n))`` with ``-1*(sum_f_R0 sin_nnn (S n))``; [Idtac | Ring].
Rewrite scal_sum.
Rewrite decomp_sum.
Replace (sin_nnn O) with R0.
Rewrite Rmult_Ol; Rewrite Rplus_Ol.
Replace (pred (S n)) with n; [Idtac | Reflexivity].
Apply sum_eq; Intros.
Rewrite Rmult_sym.
Unfold sin_nnn.
Rewrite scal_sum.
Rewrite scal_sum.
Apply sum_eq; Intros.
Unfold Rdiv.
Repeat Rewrite Rmult_assoc.
Rewrite (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``).
Repeat Rewrite <- Rmult_assoc.
Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``).
Repeat Rewrite <- Rmult_assoc.
Replace ``/(INR (fact (mult (S (S O)) (S i))))*
   (C (mult (S (S O)) (S i)) (S (mult (S (S O)) i0)))`` with ``/(INR (fact (plus (mult (S (S O)) i0) (S O))))*/(INR (fact (plus (mult (S (S O)) (minus i i0)) (S O))))``.
Replace (S (mult (2) i0)) with (plus (mult (2) i0) (1)); [Idtac | Ring].
Replace (S (mult (2) (minus i i0))) with (plus (mult (2) (minus i i0)) (1)); [Idtac | Ring].
Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i0)*(pow (-1) (minus i i0))``.
Ring.
Simpl.
Pattern 2 i; Replace i with (plus i0 (minus i i0)).
Rewrite pow_add.
Ring.
Symmetry; Apply le_plus_minus; Assumption.
Unfold C.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Rewrite Rinv_Rmult.
Replace (S (mult (S (S O)) i0)) with (plus (mult (2) i0) (1)); [Apply Rmult_mult_r | Ring].
Replace (minus (mult (2) (S i)) (plus (mult (2) i0) (1))) with (plus (mult (2) (minus i i0)) (1)).
Reflexivity.
Apply INR_eq.
Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite minus_INR.
Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Replace (plus (mult (2) i0) (1)) with (S (mult (2) i0)).
Replace (mult (2) (S i)) with (S (S (mult (2) i))).
Apply le_n_S.
Apply le_trans with (mult (2) i).
Apply mult_le; Assumption.
Apply le_n_Sn.
Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Assumption.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Reflexivity.
Apply lt_O_Sn.
Apply sum_eq; Intros.
Rewrite scal_sum.
Apply sum_eq; Intros.
Unfold Rdiv.
Repeat Rewrite <- Rmult_assoc.
Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) i)))``).
Repeat Rewrite <- Rmult_assoc.
Replace ``/(INR (fact (mult (S (S O)) i)))*
   (C (mult (S (S O)) i) (mult (S (S O)) i0))`` with ``/(INR (fact (mult (S (S O)) i0)))*/(INR (fact (mult (S (S O)) (minus i i0))))``.
Replace ``(pow (-1) i)`` with ``(pow (-1) i0)*(pow (-1) (minus i i0))``.
Ring.
Pattern 2 i; Replace i with (plus i0 (minus i i0)).
Rewrite pow_add.
Ring.
Symmetry; Apply le_plus_minus; Assumption.
Unfold C.
Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1l.
Rewrite Rinv_Rmult.
Replace (minus (mult (2) i) (mult (2) i0)) with (mult (2) (minus i i0)).
Reflexivity.
Apply INR_eq.
Rewrite mult_INR; Repeat Rewrite minus_INR.
Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
Apply mult_le; Assumption.
Assumption.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Apply INR_fact_neq_0.
Unfold Reste2; Apply sum_eq; Intros.
Apply sum_eq; Intros.
Unfold Rdiv; Ring. 
Unfold Reste1; Apply sum_eq; Intros.
Apply sum_eq; Intros.
Unfold Rdiv; Ring.
Apply lt_O_Sn.
Qed.

Lemma pow_sqr : (x:R;i:nat) (pow x (mult (2) i))==(pow ``x*x`` i). 
Intros. 
Assert H := (pow_Rsqr x i).
Unfold Rsqr in H; Exact H.
Qed. 
 
Lemma A1_cvg : (x:R) (Un_cv (A1 x) (cos x)). 
Intro. 
Assert H := (exist_cos ``x*x``). 
Elim H; Intros. 
Assert p_i := p. 
Unfold cos_in in p. 
Unfold cos_n infinit_sum in p. 
Unfold R_dist in p. 
Cut ``(cos x)==x0``. 
Intro. 
Rewrite H0. 
Unfold Un_cv; Unfold R_dist; Intros. 
Elim (p eps H1); Intros. 
Exists x1; Intros. 
Unfold A1. 
Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow (x*x) i)``) n). 
Apply H2; Assumption. 
Apply sum_eq. 
Intros. 
Replace ``(pow (x*x) i)`` with ``(pow x (mult (S (S O)) i))``. 
Reflexivity. 
Apply pow_sqr. 
Unfold cos. 
Case (exist_cos (Rsqr x)). 
Unfold Rsqr; Intros. 
Unfold cos_in in p_i. 
Unfold cos_in in c. 
Apply unicity_sum with [i:nat]``(cos_n i)*(pow (x*x) i)``; Assumption. 
Qed. 
 
Lemma C1_cvg : (x,y:R) (Un_cv (C1 x y) (cos (Rplus x y))). 
Intros. 
Assert H := (exist_cos ``(x+y)*(x+y)``). 
Elim H; Intros. 
Assert p_i := p. 
Unfold cos_in in p. 
Unfold cos_n infinit_sum in p. 
Unfold R_dist in p. 
Cut ``(cos (x+y))==x0``. 
Intro. 
Rewrite H0. 
Unfold Un_cv; Unfold R_dist; Intros. 
Elim (p eps H1); Intros. 
Exists x1; Intros. 
Unfold C1. 
Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow ((x+y)*(x+y)) i)``) n). 
Apply H2; Assumption. 
Apply sum_eq. 
Intros. 
Replace ``(pow ((x+y)*(x+y)) i)`` with ``(pow (x+y) (mult (S (S O)) i))``. 
Reflexivity. 
Apply pow_sqr. 
Unfold cos. 
Case (exist_cos (Rsqr ``x+y``)). 
Unfold Rsqr; Intros. 
Unfold cos_in in p_i. 
Unfold cos_in in c. 
Apply unicity_sum with [i:nat]``(cos_n i)*(pow ((x+y)*(x+y)) i)``; Assumption. 
Qed. 
 
Lemma B1_cvg : (x:R) (Un_cv (B1 x) (sin x)). 
Intro. 
Case (Req_EM x R0); Intro. 
Rewrite H. 
Rewrite sin_0. 
Unfold B1. 
Unfold Un_cv; Unfold R_dist; Intros; Exists O; Intros. 
Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow 0 (plus (mult (S (S O)) k) (S O)))``) n) with R0. 
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. 
Induction n. 
Simpl; Ring. 
Rewrite tech5; Rewrite <- Hrecn. 
Simpl; Ring. 
Unfold ge; Apply le_O_n. 
Assert H0 := (exist_sin ``x*x``). 
Elim H0; Intros. 
Assert p_i := p. 
Unfold sin_in in p. 
Unfold sin_n infinit_sum in p. 
Unfold R_dist in p. 
Cut ``(sin x)==x*x0``. 
Intro. 
Rewrite H1. 
Unfold Un_cv; Unfold R_dist; Intros. 
Cut ``0<eps/(Rabsolu x)``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption]]. 
Elim (p ``eps/(Rabsolu x)`` H3); Intros. 
Exists x1; Intros. 
Unfold B1. 
Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow x (plus (mult (S (S O)) k) (S O)))``) n) with (Rmult x (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n)). 
Replace (Rminus (Rmult x (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n)) (Rmult x x0)) with (Rmult x (Rminus (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (plus (mult (S (S O)) i) (S O))))*(pow (x*x) i)``) n) x0)); [Idtac | Ring]. 
Rewrite Rabsolu_mult. 
Apply Rlt_monotony_contra with ``/(Rabsolu x)``. 
Apply Rlt_Rinv; Apply Rabsolu_pos_lt; Assumption. 
Rewrite <- Rmult_assoc. 
Rewrite <- Rinv_l_sym. 
Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps); Unfold Rdiv in H4; Apply H4; Assumption. 
Apply Rabsolu_no_R0; Assumption. 
Rewrite scal_sum. 
Apply sum_eq. 
Intros. 
Rewrite pow_add. 
Rewrite pow_sqr. 
Simpl. 
Ring. 
Unfold sin. 
Case (exist_sin (Rsqr x)). 
Unfold Rsqr; Intros. 
Unfold sin_in in p_i. 
Unfold sin_in in s. 
Assert H1 := (unicity_sum [i:nat]``(sin_n i)*(pow (x*x) i)`` x0 x1 p_i s). 
Rewrite H1; Reflexivity. 
Qed.