(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))`` N). Definition B1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow x (plus (mult (S (S O)) k) (S O)))`` N). Definition C1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat]``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))`` N). Definition Reste1 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (mult (S (S O)) (S (plus l k)))))*(pow x (mult (S (S O)) (S (plus l k))))*(pow (-1) (minus N l))/(INR (fact (mult (S (S O)) (minus N l))))*(pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))) (pred N)). Definition Reste2 [x,y:R] : nat -> R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow (-1) (S (plus l k)))/(INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*(pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*(pow (-1) (minus N l))/(INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*(pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))) (pred N)). Definition Reste [x,y:R] : nat -> R := [N:nat]``(Reste2 x y N)-(Reste1 x y (S N))``. (* Here is the main result that will be used to prove that (cos (x+y))=(cos x)(cos y)-(sin x)(sin y) *) Theorem cos_plus_form : (x,y:R;n:nat) (lt O n) -> ``(A1 x (S n))*(A1 y (S n))-(B1 x n)*(B1 y n)+(Reste x y n)``==(C1 x y (S n)). Intros. Unfold A1 B1. Rewrite (cauchy_finite [k:nat] ``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))* (pow x (mult (S (S O)) k))`` [k:nat] ``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))* (pow y (mult (S (S O)) k))`` (S n)). Rewrite (cauchy_finite [k:nat] ``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))* (pow x (plus (mult (S (S O)) k) (S O)))`` [k:nat] ``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))* (pow y (plus (mult (S (S O)) k) (S O)))`` n H). Unfold Reste. Replace (sum_f_R0 [k:nat] (sum_f_R0 [l:nat] ``(pow ( -1) (S (plus l k)))/ (INR (fact (mult (S (S O)) (S (plus l k)))))* (pow x (mult (S (S O)) (S (plus l k))))* ((pow ( -1) (minus (S n) l))/ (INR (fact (mult (S (S O)) (minus (S n) l))))* (pow y (mult (S (S O)) (minus (S n) l))))`` (pred (minus (S n) k))) (pred (S n))) with (Reste1 x y (S n)). Replace (sum_f_R0 [k:nat] (sum_f_R0 [l:nat] ``(pow ( -1) (S (plus l k)))/ (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))* (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))* ((pow ( -1) (minus n l))/ (INR (fact (plus (mult (S (S O)) (minus n l)) (S O))))* (pow y (plus (mult (S (S O)) (minus n l)) (S O))))`` (pred (minus n k))) (pred n)) with (Reste2 x y n). Ring. Replace (sum_f_R0 [k:nat] (sum_f_R0 [p:nat] ``(pow ( -1) p)/(INR (fact (mult (S (S O)) p)))* (pow x (mult (S (S O)) p))*((pow ( -1) (minus k p))/ (INR (fact (mult (S (S O)) (minus k p))))* (pow y (mult (S (S O)) (minus k p))))`` k) (S n)) with (sum_f_R0 [k:nat](Rmult ``(pow (-1) k)/(INR (fact (mult (S (S O)) k)))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) k) (mult (S (S O)) l))*(pow x (mult (S (S O)) l))*(pow y (mult (S (S O)) (minus k l)))`` k)) (S n)). Pose sin_nnn := [n:nat]Cases n of O => R0 | (S p) => (Rmult ``(pow (-1) (S p))/(INR (fact (mult (S (S O)) (S p))))`` (sum_f_R0 [l:nat]``(C (mult (S (S O)) (S p)) (S (mult (S (S O)) l)))*(pow x (S (mult (S (S O)) l)))*(pow y (S (mult (S (S O)) (minus p l))))`` p)) end. Replace (Ropp (sum_f_R0 [k:nat] (sum_f_R0 [p:nat] ``(pow ( -1) p)/ (INR (fact (plus (mult (S (S O)) p) (S O))))* (pow x (plus (mult (S (S O)) p) (S O)))* ((pow ( -1) (minus k p))/ (INR (fact (plus (mult (S (S O)) (minus k p)) (S O))))* (pow y (plus (mult (S (S O)) (minus k p)) (S O))))`` k) n)) with (sum_f_R0 sin_nnn (S n)). Rewrite <- sum_plus. Unfold C1. Apply sum_eq; Intros. Induction i. Simpl. Rewrite Rplus_Ol. Replace (C O O) with R1. Unfold Rdiv; Rewrite Rinv_R1. Ring. Unfold C. Rewrite <- minus_n_n. Simpl. Unfold Rdiv; Rewrite Rmult_1r; Rewrite Rinv_R1; Ring. Unfold sin_nnn. Rewrite <- Rmult_Rplus_distr. Apply Rmult_mult_r. Rewrite binomial. Pose Wn := [i0:nat]``(C (mult (S (S O)) (S i)) i0)*(pow x i0)* (pow y (minus (mult (S (S O)) (S i)) i0))``. Replace (sum_f_R0 [l:nat] ``(C (mult (S (S O)) (S i)) (mult (S (S O)) l))* (pow x (mult (S (S O)) l))* (pow y (mult (S (S O)) (minus (S i) l)))`` (S i)) with (sum_f_R0 [l:nat](Wn (mult (2) l)) (S i)). Replace (sum_f_R0 [l:nat] ``(C (mult (S (S O)) (S i)) (S (mult (S (S O)) l)))* (pow x (S (mult (S (S O)) l)))* (pow y (S (mult (S (S O)) (minus i l))))`` i) with (sum_f_R0 [l:nat](Wn (S (mult (2) l))) i). Rewrite Rplus_sym. Apply sum_decomposition. Apply sum_eq; Intros. Unfold Wn. Apply Rmult_mult_r. Replace (minus (mult (2) (S i)) (S (mult (2) i0))) with (S (mult (2) (minus i i0))). Reflexivity. Apply INR_eq. Rewrite S_INR; Rewrite mult_INR. Repeat Rewrite minus_INR. Rewrite mult_INR; Repeat Rewrite S_INR. Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Replace (mult (2) (S i)) with (S (S (mult (2) i))). Apply le_n_S. Apply le_trans with (mult (2) i). Apply mult_le; Assumption. Apply le_n_Sn. Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Assumption. Apply sum_eq; Intros. Unfold Wn. Apply Rmult_mult_r. Replace (minus (mult (2) (S i)) (mult (2) i0)) with (mult (2) (minus (S i) i0)). Reflexivity. Apply INR_eq. Rewrite mult_INR. Repeat Rewrite minus_INR. Rewrite mult_INR; Repeat Rewrite S_INR. Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Apply mult_le; Assumption. Assumption. Rewrite <- (Ropp_Ropp (sum_f_R0 sin_nnn (S n))). Apply eq_Ropp. Replace ``-(sum_f_R0 sin_nnn (S n))`` with ``-1*(sum_f_R0 sin_nnn (S n))``; [Idtac | Ring]. Rewrite scal_sum. Rewrite decomp_sum. Replace (sin_nnn O) with R0. Rewrite Rmult_Ol; Rewrite Rplus_Ol. Replace (pred (S n)) with n; [Idtac | Reflexivity]. Apply sum_eq; Intros. Rewrite Rmult_sym. Unfold sin_nnn. Rewrite scal_sum. Rewrite scal_sum. Apply sum_eq; Intros. Unfold Rdiv. Repeat Rewrite Rmult_assoc. Rewrite (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``). Repeat Rewrite <- Rmult_assoc. Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S i))))``). Repeat Rewrite <- Rmult_assoc. Replace ``/(INR (fact (mult (S (S O)) (S i))))* (C (mult (S (S O)) (S i)) (S (mult (S (S O)) i0)))`` with ``/(INR (fact (plus (mult (S (S O)) i0) (S O))))*/(INR (fact (plus (mult (S (S O)) (minus i i0)) (S O))))``. Replace (S (mult (2) i0)) with (plus (mult (2) i0) (1)); [Idtac | Ring]. Replace (S (mult (2) (minus i i0))) with (plus (mult (2) (minus i i0)) (1)); [Idtac | Ring]. Replace ``(pow (-1) (S i))`` with ``-1*(pow (-1) i0)*(pow (-1) (minus i i0))``. Ring. Simpl. Pattern 2 i; Replace i with (plus i0 (minus i i0)). Rewrite pow_add. Ring. Symmetry; Apply le_plus_minus; Assumption. Unfold C. Unfold Rdiv; Repeat Rewrite <- Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1l. Rewrite Rinv_Rmult. Replace (S (mult (S (S O)) i0)) with (plus (mult (2) i0) (1)); [Apply Rmult_mult_r | Ring]. Replace (minus (mult (2) (S i)) (plus (mult (2) i0) (1))) with (plus (mult (2) (minus i i0)) (1)). Reflexivity. Apply INR_eq. Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite minus_INR. Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Replace (plus (mult (2) i0) (1)) with (S (mult (2) i0)). Replace (mult (2) (S i)) with (S (S (mult (2) i))). Apply le_n_S. Apply le_trans with (mult (2) i). Apply mult_le; Assumption. Apply le_n_Sn. Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Assumption. Apply INR_fact_neq_0. Apply INR_fact_neq_0. Apply INR_fact_neq_0. Reflexivity. Apply lt_O_Sn. Apply sum_eq; Intros. Rewrite scal_sum. Apply sum_eq; Intros. Unfold Rdiv. Repeat Rewrite <- Rmult_assoc. Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) i)))``). Repeat Rewrite <- Rmult_assoc. Replace ``/(INR (fact (mult (S (S O)) i)))* (C (mult (S (S O)) i) (mult (S (S O)) i0))`` with ``/(INR (fact (mult (S (S O)) i0)))*/(INR (fact (mult (S (S O)) (minus i i0))))``. Replace ``(pow (-1) i)`` with ``(pow (-1) i0)*(pow (-1) (minus i i0))``. Ring. Pattern 2 i; Replace i with (plus i0 (minus i i0)). Rewrite pow_add. Ring. Symmetry; Apply le_plus_minus; Assumption. Unfold C. Unfold Rdiv; Repeat Rewrite <- Rmult_assoc. Rewrite <- Rinv_l_sym. Rewrite Rmult_1l. Rewrite Rinv_Rmult. Replace (minus (mult (2) i) (mult (2) i0)) with (mult (2) (minus i i0)). Reflexivity. Apply INR_eq. Rewrite mult_INR; Repeat Rewrite minus_INR. Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring. Apply mult_le; Assumption. Assumption. Apply INR_fact_neq_0. Apply INR_fact_neq_0. Apply INR_fact_neq_0. Unfold Reste2; Apply sum_eq; Intros. Apply sum_eq; Intros. Unfold Rdiv; Ring. Unfold Reste1; Apply sum_eq; Intros. Apply sum_eq; Intros. Unfold Rdiv; Ring. Apply lt_O_Sn. Qed. Lemma pow_sqr : (x:R;i:nat) (pow x (mult (2) i))==(pow ``x*x`` i). Intros. Assert H := (pow_Rsqr x i). Unfold Rsqr in H; Exact H. Qed. Lemma A1_cvg : (x:R) (Un_cv (A1 x) (cos x)). Intro. Assert H := (exist_cos ``x*x``). Elim H; Intros. Assert p_i := p. Unfold cos_in in p. Unfold cos_n infinit_sum in p. Unfold R_dist in p. Cut ``(cos x)==x0``. Intro. Rewrite H0. Unfold Un_cv; Unfold R_dist; Intros. Elim (p eps H1); Intros. Exists x1; Intros. Unfold A1. Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow x (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow (x*x) i)``) n). Apply H2; Assumption. Apply sum_eq. Intros. Replace ``(pow (x*x) i)`` with ``(pow x (mult (S (S O)) i))``. Reflexivity. Apply pow_sqr. Unfold cos. Case (exist_cos (Rsqr x)). Unfold Rsqr; Intros. Unfold cos_in in p_i. Unfold cos_in in c. Apply unicity_sum with [i:nat]``(cos_n i)*(pow (x*x) i)``; Assumption. Qed. Lemma C1_cvg : (x,y:R) (Un_cv (C1 x y) (cos (Rplus x y))). Intros. Assert H := (exist_cos ``(x+y)*(x+y)``). Elim H; Intros. Assert p_i := p. Unfold cos_in in p. Unfold cos_n infinit_sum in p. Unfold R_dist in p. Cut ``(cos (x+y))==x0``. Intro. Rewrite H0. Unfold Un_cv; Unfold R_dist; Intros. Elim (p eps H1); Intros. Exists x1; Intros. Unfold C1. Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (mult (S (S O)) k)))*(pow (x+y) (mult (S (S O)) k))``) n) with (sum_f_R0 ([i:nat]``(pow ( -1) i)/(INR (fact (mult (S (S O)) i)))*(pow ((x+y)*(x+y)) i)``) n). Apply H2; Assumption. Apply sum_eq. Intros. Replace ``(pow ((x+y)*(x+y)) i)`` with ``(pow (x+y) (mult (S (S O)) i))``. Reflexivity. Apply pow_sqr. Unfold cos. Case (exist_cos (Rsqr ``x+y``)). Unfold Rsqr; Intros. Unfold cos_in in p_i. Unfold cos_in in c. Apply unicity_sum with [i:nat]``(cos_n i)*(pow ((x+y)*(x+y)) i)``; Assumption. Qed. Lemma B1_cvg : (x:R) (Un_cv (B1 x) (sin x)). Intro. Case (Req_EM x R0); Intro. Rewrite H. Rewrite sin_0. Unfold B1. Unfold Un_cv; Unfold R_dist; Intros; Exists O; Intros. Replace (sum_f_R0 ([k:nat]``(pow ( -1) k)/(INR (fact (plus (mult (S (S O)) k) (S O))))*(pow 0 (plus (mult (S (S O)) k) (S O)))``) n) with R0. Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Assumption. Induction n. Simpl; Ring. Rewrite tech5; Rewrite <- Hrecn. Simpl; Ring. Unfold ge; Apply le_O_n. Assert H0 := (exist_sin ``x*x``). Elim H0; Intros. Assert p_i := p. Unfold sin_in in p. Unfold sin_n infinit_sum in p. Unfold R_dist in p. Cut ``(sin x)==x*x0``. Intro. Rewrite H1. Unfold Un_cv; Unfold R_dist; Intros. Cut ``0