summaryrefslogtreecommitdiff
path: root/theories7/IntMap/Fset.v
blob: 545c1716642802834d80ce5f61fb00e1e86b8b1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*i 	$Id: Fset.v,v 1.1.2.1 2004/07/16 19:31:27 herbelin Exp $	 i*)

(*s Sets operations on maps *)

Require Bool.
Require Sumbool.
Require ZArith.
Require Addr.
Require Adist.
Require Addec.
Require Map.

Section Dom.

  Variable A, B : Set.

  Fixpoint MapDomRestrTo [m:(Map A)] : (Map B) -> (Map A) :=
    Cases m of
        M0 => [_:(Map B)] (M0 A)
      | (M1 a y) => [m':(Map B)] Cases (MapGet B m' a) of
                                 NONE => (M0 A)
			       | _ => m
			     end
      | (M2 m1 m2) => [m':(Map B)] Cases m' of
                                   M0 => (M0 A)
				 | (M1 a' y') => Cases (MapGet A m a') of
				                     NONE => (M0 A)
						   | (SOME y) => (M1 A a' y)
						 end
				 | (M2 m'1 m'2) => (makeM2 A (MapDomRestrTo m1 m'1)
				                             (MapDomRestrTo m2 m'2))
			       end
    end.

  Lemma MapDomRestrTo_semantics : (m:(Map A)) (m':(Map B))
      (eqm A (MapGet A (MapDomRestrTo m m'))
             [a0:ad] Cases (MapGet B m' a0) of
	               NONE => (NONE A)
		     | _ => (MapGet A m a0)
		   end).
  Proof.
    Unfold eqm. Induction m. Simpl. Intros. Case (MapGet B m' a); Trivial.
    Intros. Simpl. Elim (sumbool_of_bool (ad_eq a a1)). Intro H. Rewrite H.
    Rewrite <- (ad_eq_complete ? ? H). Case (MapGet B m' a). Reflexivity.
    Intro. Apply M1_semantics_1.
    Intro H. Rewrite H. Case (MapGet B m' a). 
    Case (MapGet B m' a1); Reflexivity.
    Case (MapGet B m' a1); Intros; Exact (M1_semantics_2 A a a1 a0 H).
    Induction m'. Trivial.
    Unfold MapDomRestrTo. Intros. Elim (sumbool_of_bool (ad_eq a a1)).
    Intro H1.
    Rewrite (ad_eq_complete ? ? H1). Rewrite (M1_semantics_1 B a1 a0).
    Case (MapGet A (M2 A m0 m1) a1). Reflexivity.
    Intro. Apply M1_semantics_1.
    Intro H1. Rewrite (M1_semantics_2 B a a1 a0 H1). Case (MapGet A (M2 A m0 m1) a). Reflexivity.
    Intro. Exact (M1_semantics_2 A a a1 a2 H1).
    Intros. Change (MapGet A (makeM2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3)) a)
        =(Cases (MapGet B (M2 B m2 m3) a) of
            NONE => (NONE A)
          | (SOME _) => (MapGet A (M2 A m0 m1) a)
          end).
    Rewrite (makeM2_M2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3) a).
    Rewrite MapGet_M2_bit_0_if. Rewrite (H0 m3 (ad_div_2 a)). Rewrite (H m2 (ad_div_2 a)).
    Rewrite (MapGet_M2_bit_0_if B m2 m3 a). Rewrite (MapGet_M2_bit_0_if A m0 m1 a).
    Case (ad_bit_0 a); Reflexivity.
  Qed.

  Fixpoint MapDomRestrBy [m:(Map A)] : (Map B) -> (Map A) :=
    Cases m of
        M0 => [_:(Map B)] (M0 A)
      | (M1 a y) => [m':(Map B)] Cases (MapGet B m' a) of
                                 NONE => m
			       | _ => (M0 A)
			     end
      | (M2 m1 m2) => [m':(Map B)] Cases m' of
                                   M0 => m
				 | (M1 a' y') => (MapRemove A m a')
				 | (M2 m'1 m'2) => (makeM2 A (MapDomRestrBy m1 m'1)
				                             (MapDomRestrBy m2 m'2))
			       end
    end.

  Lemma MapDomRestrBy_semantics : (m:(Map A)) (m':(Map B))
      (eqm A (MapGet A (MapDomRestrBy m m'))
             [a0:ad] Cases (MapGet B m' a0) of
	               NONE => (MapGet A m a0)
		     | _ => (NONE A)
		   end).
  Proof.
    Unfold eqm. Induction m. Simpl. Intros. Case (MapGet B m' a); Trivial.
    Intros. Simpl. Elim (sumbool_of_bool (ad_eq a a1)). Intro H. Rewrite H.
    Rewrite (ad_eq_complete ? ? H). Case (MapGet B m' a1). Apply M1_semantics_1.
    Trivial.
    Intro H. Rewrite H. Case (MapGet B m' a). Rewrite (M1_semantics_2 A a a1 a0 H).
    Case (MapGet B m' a1); Trivial.
    Case (MapGet B m' a1); Trivial.
    Induction m'. Trivial.
    Unfold MapDomRestrBy. Intros. Rewrite (MapRemove_semantics A (M2 A m0 m1) a a1).
    Elim (sumbool_of_bool (ad_eq a a1)). Intro H1. Rewrite H1. Rewrite (ad_eq_complete ? ? H1).
    Rewrite (M1_semantics_1 B a1 a0). Reflexivity.
    Intro H1. Rewrite H1. Rewrite (M1_semantics_2 B a a1 a0 H1). Reflexivity.
    Intros. Change (MapGet A (makeM2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3)) a)
        =(Cases (MapGet B (M2 B m2 m3) a) of
            NONE => (MapGet A (M2 A m0 m1) a)
          | (SOME _) => (NONE A)
          end).
    Rewrite (makeM2_M2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3) a).
    Rewrite MapGet_M2_bit_0_if. Rewrite (H0 m3 (ad_div_2 a)). Rewrite (H m2 (ad_div_2 a)).
    Rewrite (MapGet_M2_bit_0_if B m2 m3 a). Rewrite (MapGet_M2_bit_0_if A m0 m1 a).
    Case (ad_bit_0 a); Reflexivity.
  Qed.

  Definition in_dom := [a:ad; m:(Map A)]
    Cases (MapGet A m a) of
        NONE => false
      | _ => true
    end.

  Lemma in_dom_M0 : (a:ad) (in_dom a (M0 A))=false.
  Proof.
    Trivial.
  Qed.

  Lemma in_dom_M1 : (a,a0:ad) (y:A) (in_dom a0 (M1 A a y))=(ad_eq a a0).
  Proof.
    Unfold in_dom. Intros. Simpl. Case (ad_eq a a0); Reflexivity.
  Qed.

  Lemma in_dom_M1_1 : (a:ad) (y:A) (in_dom a (M1 A a y))=true.
  Proof.
    Intros. Rewrite in_dom_M1. Apply ad_eq_correct.
  Qed.

  Lemma in_dom_M1_2 : (a,a0:ad) (y:A) (in_dom a0 (M1 A a y))=true -> a=a0.
  Proof.
    Intros. Apply (ad_eq_complete a a0). Rewrite (in_dom_M1 a a0 y) in H. Assumption.
  Qed.

  Lemma in_dom_some : (m:(Map A)) (a:ad) (in_dom a m)=true ->
      {y:A | (MapGet A m a)=(SOME A y)}.
  Proof.
    Unfold in_dom. Intros. Elim (option_sum ? (MapGet A m a)). Trivial.
    Intro H0. Rewrite H0 in H. Discriminate H.
  Qed.

  Lemma in_dom_none : (m:(Map A)) (a:ad) (in_dom a m)=false ->
      (MapGet A m a)=(NONE A).
  Proof.
    Unfold in_dom. Intros. Elim (option_sum ? (MapGet A m a)). Intro H0. Elim H0.
    Intros y H1. Rewrite H1 in H. Discriminate H.
    Trivial.
  Qed.

  Lemma in_dom_put : (m:(Map A)) (a0:ad) (y0:A) (a:ad)
      (in_dom a (MapPut A m a0 y0))=(orb (ad_eq a a0) (in_dom a m)).
  Proof.
    Unfold in_dom. Intros. Rewrite (MapPut_semantics A m a0 y0 a).
    Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H.
    Rewrite H. Rewrite orb_true_b. Reflexivity.
    Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Rewrite orb_false_b.
    Reflexivity.
  Qed.

  Lemma in_dom_put_behind : (m:(Map A)) (a0:ad) (y0:A) (a:ad)
      (in_dom a (MapPut_behind A m a0 y0))=(orb (ad_eq a a0) (in_dom a m)).
  Proof.
    Unfold in_dom. Intros. Rewrite (MapPut_behind_semantics A m a0 y0 a).
    Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H.
    Rewrite H. Case (MapGet A m a); Reflexivity.
    Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Case (MapGet A m a); Trivial.
  Qed.

  Lemma in_dom_remove : (m:(Map A)) (a0:ad) (a:ad)
      (in_dom a (MapRemove A m a0))=(andb (negb (ad_eq a a0)) (in_dom a m)).
  Proof.
    Unfold in_dom. Intros. Rewrite (MapRemove_semantics A m a0 a).
    Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H.
    Rewrite H. Reflexivity.
    Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H.
    Case (MapGet A m a); Reflexivity.
  Qed.

  Lemma in_dom_merge : (m,m':(Map A)) (a:ad)
      (in_dom a (MapMerge A m m'))=(orb (in_dom a m) (in_dom a m')).
  Proof.
    Unfold in_dom. Intros. Rewrite (MapMerge_semantics A m m' a).
    Elim (option_sum A (MapGet A m' a)). Intro H. Elim H. Intros y H0. Rewrite H0.
    Case (MapGet A m a); Reflexivity.
    Intro H. Rewrite H. Rewrite orb_b_false. Reflexivity.
  Qed.

  Lemma in_dom_delta : (m,m':(Map A)) (a:ad)
      (in_dom a (MapDelta A m m'))=(xorb (in_dom a m) (in_dom a m')).
  Proof.
    Unfold in_dom. Intros. Rewrite (MapDelta_semantics A m m' a).
    Elim (option_sum A (MapGet A m' a)). Intro H. Elim H. Intros y H0. Rewrite H0.
    Case (MapGet A m a); Reflexivity.
    Intro H. Rewrite H. Case (MapGet A m a); Reflexivity.
  Qed.

End Dom.

Section InDom.

  Variable A, B : Set.

  Lemma in_dom_restrto : (m:(Map A)) (m':(Map B)) (a:ad)
    (in_dom A a (MapDomRestrTo A B m m'))=(andb (in_dom A a m) (in_dom B a m')).
  Proof.
    Unfold in_dom. Intros. Rewrite (MapDomRestrTo_semantics A B m m' a).
    Elim (option_sum B (MapGet B m' a)). Intro H. Elim H. Intros y H0. Rewrite H0.
    Rewrite andb_b_true. Reflexivity.
    Intro H. Rewrite H. Rewrite andb_b_false. Reflexivity.
  Qed.

  Lemma in_dom_restrby : (m:(Map A)) (m':(Map B)) (a:ad)
    (in_dom A a (MapDomRestrBy A B m m'))=(andb (in_dom A a m) (negb (in_dom B a m'))).
  Proof.
    Unfold in_dom. Intros. Rewrite (MapDomRestrBy_semantics A B m m' a).
    Elim (option_sum B (MapGet B m' a)). Intro H. Elim H. Intros y H0. Rewrite H0.
    Unfold negb. Rewrite andb_b_false. Reflexivity.
    Intro H. Rewrite H. Unfold negb. Rewrite andb_b_true. Reflexivity.
  Qed.

End InDom.

Definition FSet := (Map unit).

Section FSetDefs.

  Variable A : Set.

  Definition in_FSet : ad -> FSet -> bool := (in_dom unit).

  Fixpoint MapDom [m:(Map A)] : FSet :=
    Cases m of
      	M0 => (M0 unit)
      | (M1 a _) => (M1 unit a tt)
      | (M2 m m') => (M2 unit (MapDom m) (MapDom m'))
    end.

  Lemma MapDom_semantics_1 : (m:(Map A)) (a:ad) 
      (y:A) (MapGet A m a)=(SOME A y) -> (in_FSet a (MapDom m))=true.
  Proof.
    Induction m. Intros. Discriminate H.
    Unfold MapDom. Unfold in_FSet. Unfold in_dom. Unfold MapGet. Intros a y a0 y0.
    Case (ad_eq a a0). Trivial.
    Intro. Discriminate H.
    Intros m0 H m1 H0 a y. Rewrite (MapGet_M2_bit_0_if A m0 m1 a). Simpl. Unfold in_FSet.
    Unfold in_dom. Rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
    Case (ad_bit_0 a). Unfold in_FSet in_dom in H0. Intro. Apply H0 with y:=y. Assumption.
    Unfold in_FSet in_dom in H. Intro. Apply H with y:=y. Assumption.
  Qed.

  Lemma MapDom_semantics_2 : (m:(Map A)) (a:ad) 
      (in_FSet a (MapDom m))=true -> {y:A | (MapGet A m a)=(SOME A y)}.
  Proof.
    Induction m. Intros. Discriminate H.
    Unfold MapDom. Unfold in_FSet. Unfold in_dom. Unfold MapGet. Intros a y a0. Case (ad_eq a a0).
    Intro. Split with y. Reflexivity.
    Intro. Discriminate H.
    Intros m0 H m1 H0 a. Rewrite (MapGet_M2_bit_0_if A m0 m1 a). Simpl. Unfold in_FSet.
    Unfold in_dom. Rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
    Case (ad_bit_0 a). Unfold in_FSet in_dom in H0. Intro. Apply H0. Assumption.
    Unfold in_FSet in_dom in H. Intro. Apply H. Assumption.
  Qed.

  Lemma MapDom_semantics_3 : (m:(Map A)) (a:ad) 
      (MapGet A m a)=(NONE A) -> (in_FSet a (MapDom m))=false.
  Proof.
    Intros. Elim (sumbool_of_bool (in_FSet a (MapDom m))). Intro H0.
    Elim (MapDom_semantics_2 m a H0). Intros y H1. Rewrite H in H1. Discriminate H1.
    Trivial.
  Qed.

  Lemma MapDom_semantics_4 : (m:(Map A)) (a:ad) 
      (in_FSet a (MapDom m))=false -> (MapGet A m a)=(NONE A).
  Proof.
    Intros. Elim (option_sum A (MapGet A m a)). Intro H0. Elim H0. Intros y H1.
    Rewrite (MapDom_semantics_1 m a y H1) in H. Discriminate H.
    Trivial.
  Qed.

  Lemma MapDom_Dom : (m:(Map A)) (a:ad) (in_dom A a m)=(in_FSet a (MapDom m)).
  Proof.
    Intros. Elim (sumbool_of_bool (in_FSet a (MapDom m))). Intro H.
    Elim (MapDom_semantics_2 m a H). Intros y H0. Rewrite H. Unfold in_dom. Rewrite H0.
    Reflexivity.
    Intro H. Rewrite H. Unfold in_dom. Rewrite (MapDom_semantics_4 m a H). Reflexivity.
  Qed.

  Definition FSetUnion : FSet -> FSet -> FSet := [s,s':FSet] (MapMerge unit s s').

  Lemma in_FSet_union : (s,s':FSet) (a:ad)
      (in_FSet a (FSetUnion s s'))=(orb (in_FSet a s) (in_FSet a s')).
  Proof.
    Exact (in_dom_merge unit).
  Qed.

  Definition FSetInter : FSet -> FSet -> FSet := [s,s':FSet] (MapDomRestrTo unit unit s s').

  Lemma in_FSet_inter : (s,s':FSet) (a:ad)
      (in_FSet a (FSetInter s s'))=(andb (in_FSet a s) (in_FSet a s')).
  Proof.
    Exact (in_dom_restrto unit unit).
  Qed.

  Definition FSetDiff : FSet -> FSet -> FSet := [s,s':FSet] (MapDomRestrBy unit unit s s').

  Lemma in_FSet_diff : (s,s':FSet) (a:ad)
      (in_FSet a (FSetDiff s s'))=(andb (in_FSet a s) (negb (in_FSet a s'))).
  Proof.
    Exact (in_dom_restrby unit unit).
  Qed.

  Definition FSetDelta : FSet -> FSet -> FSet := [s,s':FSet] (MapDelta unit s s').

  Lemma in_FSet_delta : (s,s':FSet) (a:ad)
      (in_FSet a (FSetDelta s s'))=(xorb (in_FSet a s) (in_FSet a s')).
  Proof.
    Exact (in_dom_delta unit).
  Qed.

End FSetDefs.

Lemma FSet_Dom : (s:FSet) (MapDom unit s)=s.
Proof.
  Induction s. Trivial.
  Simpl. Intros a t. Elim t. Reflexivity.
  Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity.
Qed.