(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (Map A) := Cases m of M0 => [_:(Map B)] (M0 A) | (M1 a y) => [m':(Map B)] Cases (MapGet B m' a) of NONE => (M0 A) | _ => m end | (M2 m1 m2) => [m':(Map B)] Cases m' of M0 => (M0 A) | (M1 a' y') => Cases (MapGet A m a') of NONE => (M0 A) | (SOME y) => (M1 A a' y) end | (M2 m'1 m'2) => (makeM2 A (MapDomRestrTo m1 m'1) (MapDomRestrTo m2 m'2)) end end. Lemma MapDomRestrTo_semantics : (m:(Map A)) (m':(Map B)) (eqm A (MapGet A (MapDomRestrTo m m')) [a0:ad] Cases (MapGet B m' a0) of NONE => (NONE A) | _ => (MapGet A m a0) end). Proof. Unfold eqm. Induction m. Simpl. Intros. Case (MapGet B m' a); Trivial. Intros. Simpl. Elim (sumbool_of_bool (ad_eq a a1)). Intro H. Rewrite H. Rewrite <- (ad_eq_complete ? ? H). Case (MapGet B m' a). Reflexivity. Intro. Apply M1_semantics_1. Intro H. Rewrite H. Case (MapGet B m' a). Case (MapGet B m' a1); Reflexivity. Case (MapGet B m' a1); Intros; Exact (M1_semantics_2 A a a1 a0 H). Induction m'. Trivial. Unfold MapDomRestrTo. Intros. Elim (sumbool_of_bool (ad_eq a a1)). Intro H1. Rewrite (ad_eq_complete ? ? H1). Rewrite (M1_semantics_1 B a1 a0). Case (MapGet A (M2 A m0 m1) a1). Reflexivity. Intro. Apply M1_semantics_1. Intro H1. Rewrite (M1_semantics_2 B a a1 a0 H1). Case (MapGet A (M2 A m0 m1) a). Reflexivity. Intro. Exact (M1_semantics_2 A a a1 a2 H1). Intros. Change (MapGet A (makeM2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3)) a) =(Cases (MapGet B (M2 B m2 m3) a) of NONE => (NONE A) | (SOME _) => (MapGet A (M2 A m0 m1) a) end). Rewrite (makeM2_M2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3) a). Rewrite MapGet_M2_bit_0_if. Rewrite (H0 m3 (ad_div_2 a)). Rewrite (H m2 (ad_div_2 a)). Rewrite (MapGet_M2_bit_0_if B m2 m3 a). Rewrite (MapGet_M2_bit_0_if A m0 m1 a). Case (ad_bit_0 a); Reflexivity. Qed. Fixpoint MapDomRestrBy [m:(Map A)] : (Map B) -> (Map A) := Cases m of M0 => [_:(Map B)] (M0 A) | (M1 a y) => [m':(Map B)] Cases (MapGet B m' a) of NONE => m | _ => (M0 A) end | (M2 m1 m2) => [m':(Map B)] Cases m' of M0 => m | (M1 a' y') => (MapRemove A m a') | (M2 m'1 m'2) => (makeM2 A (MapDomRestrBy m1 m'1) (MapDomRestrBy m2 m'2)) end end. Lemma MapDomRestrBy_semantics : (m:(Map A)) (m':(Map B)) (eqm A (MapGet A (MapDomRestrBy m m')) [a0:ad] Cases (MapGet B m' a0) of NONE => (MapGet A m a0) | _ => (NONE A) end). Proof. Unfold eqm. Induction m. Simpl. Intros. Case (MapGet B m' a); Trivial. Intros. Simpl. Elim (sumbool_of_bool (ad_eq a a1)). Intro H. Rewrite H. Rewrite (ad_eq_complete ? ? H). Case (MapGet B m' a1). Apply M1_semantics_1. Trivial. Intro H. Rewrite H. Case (MapGet B m' a). Rewrite (M1_semantics_2 A a a1 a0 H). Case (MapGet B m' a1); Trivial. Case (MapGet B m' a1); Trivial. Induction m'. Trivial. Unfold MapDomRestrBy. Intros. Rewrite (MapRemove_semantics A (M2 A m0 m1) a a1). Elim (sumbool_of_bool (ad_eq a a1)). Intro H1. Rewrite H1. Rewrite (ad_eq_complete ? ? H1). Rewrite (M1_semantics_1 B a1 a0). Reflexivity. Intro H1. Rewrite H1. Rewrite (M1_semantics_2 B a a1 a0 H1). Reflexivity. Intros. Change (MapGet A (makeM2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3)) a) =(Cases (MapGet B (M2 B m2 m3) a) of NONE => (MapGet A (M2 A m0 m1) a) | (SOME _) => (NONE A) end). Rewrite (makeM2_M2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3) a). Rewrite MapGet_M2_bit_0_if. Rewrite (H0 m3 (ad_div_2 a)). Rewrite (H m2 (ad_div_2 a)). Rewrite (MapGet_M2_bit_0_if B m2 m3 a). Rewrite (MapGet_M2_bit_0_if A m0 m1 a). Case (ad_bit_0 a); Reflexivity. Qed. Definition in_dom := [a:ad; m:(Map A)] Cases (MapGet A m a) of NONE => false | _ => true end. Lemma in_dom_M0 : (a:ad) (in_dom a (M0 A))=false. Proof. Trivial. Qed. Lemma in_dom_M1 : (a,a0:ad) (y:A) (in_dom a0 (M1 A a y))=(ad_eq a a0). Proof. Unfold in_dom. Intros. Simpl. Case (ad_eq a a0); Reflexivity. Qed. Lemma in_dom_M1_1 : (a:ad) (y:A) (in_dom a (M1 A a y))=true. Proof. Intros. Rewrite in_dom_M1. Apply ad_eq_correct. Qed. Lemma in_dom_M1_2 : (a,a0:ad) (y:A) (in_dom a0 (M1 A a y))=true -> a=a0. Proof. Intros. Apply (ad_eq_complete a a0). Rewrite (in_dom_M1 a a0 y) in H. Assumption. Qed. Lemma in_dom_some : (m:(Map A)) (a:ad) (in_dom a m)=true -> {y:A | (MapGet A m a)=(SOME A y)}. Proof. Unfold in_dom. Intros. Elim (option_sum ? (MapGet A m a)). Trivial. Intro H0. Rewrite H0 in H. Discriminate H. Qed. Lemma in_dom_none : (m:(Map A)) (a:ad) (in_dom a m)=false -> (MapGet A m a)=(NONE A). Proof. Unfold in_dom. Intros. Elim (option_sum ? (MapGet A m a)). Intro H0. Elim H0. Intros y H1. Rewrite H1 in H. Discriminate H. Trivial. Qed. Lemma in_dom_put : (m:(Map A)) (a0:ad) (y0:A) (a:ad) (in_dom a (MapPut A m a0 y0))=(orb (ad_eq a a0) (in_dom a m)). Proof. Unfold in_dom. Intros. Rewrite (MapPut_semantics A m a0 y0 a). Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Rewrite orb_true_b. Reflexivity. Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Rewrite orb_false_b. Reflexivity. Qed. Lemma in_dom_put_behind : (m:(Map A)) (a0:ad) (y0:A) (a:ad) (in_dom a (MapPut_behind A m a0 y0))=(orb (ad_eq a a0) (in_dom a m)). Proof. Unfold in_dom. Intros. Rewrite (MapPut_behind_semantics A m a0 y0 a). Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Case (MapGet A m a); Reflexivity. Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Case (MapGet A m a); Trivial. Qed. Lemma in_dom_remove : (m:(Map A)) (a0:ad) (a:ad) (in_dom a (MapRemove A m a0))=(andb (negb (ad_eq a a0)) (in_dom a m)). Proof. Unfold in_dom. Intros. Rewrite (MapRemove_semantics A m a0 a). Elim (sumbool_of_bool (ad_eq a a0)). Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Reflexivity. Intro H. Rewrite H. Rewrite (ad_eq_comm a a0) in H. Rewrite H. Case (MapGet A m a); Reflexivity. Qed. Lemma in_dom_merge : (m,m':(Map A)) (a:ad) (in_dom a (MapMerge A m m'))=(orb (in_dom a m) (in_dom a m')). Proof. Unfold in_dom. Intros. Rewrite (MapMerge_semantics A m m' a). Elim (option_sum A (MapGet A m' a)). Intro H. Elim H. Intros y H0. Rewrite H0. Case (MapGet A m a); Reflexivity. Intro H. Rewrite H. Rewrite orb_b_false. Reflexivity. Qed. Lemma in_dom_delta : (m,m':(Map A)) (a:ad) (in_dom a (MapDelta A m m'))=(xorb (in_dom a m) (in_dom a m')). Proof. Unfold in_dom. Intros. Rewrite (MapDelta_semantics A m m' a). Elim (option_sum A (MapGet A m' a)). Intro H. Elim H. Intros y H0. Rewrite H0. Case (MapGet A m a); Reflexivity. Intro H. Rewrite H. Case (MapGet A m a); Reflexivity. Qed. End Dom. Section InDom. Variable A, B : Set. Lemma in_dom_restrto : (m:(Map A)) (m':(Map B)) (a:ad) (in_dom A a (MapDomRestrTo A B m m'))=(andb (in_dom A a m) (in_dom B a m')). Proof. Unfold in_dom. Intros. Rewrite (MapDomRestrTo_semantics A B m m' a). Elim (option_sum B (MapGet B m' a)). Intro H. Elim H. Intros y H0. Rewrite H0. Rewrite andb_b_true. Reflexivity. Intro H. Rewrite H. Rewrite andb_b_false. Reflexivity. Qed. Lemma in_dom_restrby : (m:(Map A)) (m':(Map B)) (a:ad) (in_dom A a (MapDomRestrBy A B m m'))=(andb (in_dom A a m) (negb (in_dom B a m'))). Proof. Unfold in_dom. Intros. Rewrite (MapDomRestrBy_semantics A B m m' a). Elim (option_sum B (MapGet B m' a)). Intro H. Elim H. Intros y H0. Rewrite H0. Unfold negb. Rewrite andb_b_false. Reflexivity. Intro H. Rewrite H. Unfold negb. Rewrite andb_b_true. Reflexivity. Qed. End InDom. Definition FSet := (Map unit). Section FSetDefs. Variable A : Set. Definition in_FSet : ad -> FSet -> bool := (in_dom unit). Fixpoint MapDom [m:(Map A)] : FSet := Cases m of M0 => (M0 unit) | (M1 a _) => (M1 unit a tt) | (M2 m m') => (M2 unit (MapDom m) (MapDom m')) end. Lemma MapDom_semantics_1 : (m:(Map A)) (a:ad) (y:A) (MapGet A m a)=(SOME A y) -> (in_FSet a (MapDom m))=true. Proof. Induction m. Intros. Discriminate H. Unfold MapDom. Unfold in_FSet. Unfold in_dom. Unfold MapGet. Intros a y a0 y0. Case (ad_eq a a0). Trivial. Intro. Discriminate H. Intros m0 H m1 H0 a y. Rewrite (MapGet_M2_bit_0_if A m0 m1 a). Simpl. Unfold in_FSet. Unfold in_dom. Rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a). Case (ad_bit_0 a). Unfold in_FSet in_dom in H0. Intro. Apply H0 with y:=y. Assumption. Unfold in_FSet in_dom in H. Intro. Apply H with y:=y. Assumption. Qed. Lemma MapDom_semantics_2 : (m:(Map A)) (a:ad) (in_FSet a (MapDom m))=true -> {y:A | (MapGet A m a)=(SOME A y)}. Proof. Induction m. Intros. Discriminate H. Unfold MapDom. Unfold in_FSet. Unfold in_dom. Unfold MapGet. Intros a y a0. Case (ad_eq a a0). Intro. Split with y. Reflexivity. Intro. Discriminate H. Intros m0 H m1 H0 a. Rewrite (MapGet_M2_bit_0_if A m0 m1 a). Simpl. Unfold in_FSet. Unfold in_dom. Rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a). Case (ad_bit_0 a). Unfold in_FSet in_dom in H0. Intro. Apply H0. Assumption. Unfold in_FSet in_dom in H. Intro. Apply H. Assumption. Qed. Lemma MapDom_semantics_3 : (m:(Map A)) (a:ad) (MapGet A m a)=(NONE A) -> (in_FSet a (MapDom m))=false. Proof. Intros. Elim (sumbool_of_bool (in_FSet a (MapDom m))). Intro H0. Elim (MapDom_semantics_2 m a H0). Intros y H1. Rewrite H in H1. Discriminate H1. Trivial. Qed. Lemma MapDom_semantics_4 : (m:(Map A)) (a:ad) (in_FSet a (MapDom m))=false -> (MapGet A m a)=(NONE A). Proof. Intros. Elim (option_sum A (MapGet A m a)). Intro H0. Elim H0. Intros y H1. Rewrite (MapDom_semantics_1 m a y H1) in H. Discriminate H. Trivial. Qed. Lemma MapDom_Dom : (m:(Map A)) (a:ad) (in_dom A a m)=(in_FSet a (MapDom m)). Proof. Intros. Elim (sumbool_of_bool (in_FSet a (MapDom m))). Intro H. Elim (MapDom_semantics_2 m a H). Intros y H0. Rewrite H. Unfold in_dom. Rewrite H0. Reflexivity. Intro H. Rewrite H. Unfold in_dom. Rewrite (MapDom_semantics_4 m a H). Reflexivity. Qed. Definition FSetUnion : FSet -> FSet -> FSet := [s,s':FSet] (MapMerge unit s s'). Lemma in_FSet_union : (s,s':FSet) (a:ad) (in_FSet a (FSetUnion s s'))=(orb (in_FSet a s) (in_FSet a s')). Proof. Exact (in_dom_merge unit). Qed. Definition FSetInter : FSet -> FSet -> FSet := [s,s':FSet] (MapDomRestrTo unit unit s s'). Lemma in_FSet_inter : (s,s':FSet) (a:ad) (in_FSet a (FSetInter s s'))=(andb (in_FSet a s) (in_FSet a s')). Proof. Exact (in_dom_restrto unit unit). Qed. Definition FSetDiff : FSet -> FSet -> FSet := [s,s':FSet] (MapDomRestrBy unit unit s s'). Lemma in_FSet_diff : (s,s':FSet) (a:ad) (in_FSet a (FSetDiff s s'))=(andb (in_FSet a s) (negb (in_FSet a s'))). Proof. Exact (in_dom_restrby unit unit). Qed. Definition FSetDelta : FSet -> FSet -> FSet := [s,s':FSet] (MapDelta unit s s'). Lemma in_FSet_delta : (s,s':FSet) (a:ad) (in_FSet a (FSetDelta s s'))=(xorb (in_FSet a s) (in_FSet a s')). Proof. Exact (in_dom_delta unit). Qed. End FSetDefs. Lemma FSet_Dom : (s:FSet) (MapDom unit s)=s. Proof. Induction s. Trivial. Simpl. Intros a t. Elim t. Reflexivity. Intros. Simpl. Rewrite H. Rewrite H0. Reflexivity. Qed.