summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zquot.v
blob: 9a95669f564e46614ebe62e44c11b1418186ab09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import Nnat ZArith_base ROmega ZArithRing Zdiv Morphisms.

Local Open Scope Z_scope.

(** This file provides results about the Round-Toward-Zero Euclidean
  division [Zquotrem], whose projections are [Zquot] and [Zrem].
  Definition of this division can be found in file [BinIntDef].

  This division and the one defined in Zdiv agree only on positive
  numbers. Otherwise, Zdiv performs Round-Toward-Bottom (a.k.a Floor).

  The current approach is compatible with the division of usual
  programming languages such as Ocaml. In addition, it has nicer
  properties with respect to opposite and other usual operations.
*)

(** * Relation between division on N and on Z. *)

Lemma Ndiv_Zquot : forall a b:N,
  Z_of_N (a/b) = (Z_of_N a ÷ Z_of_N b).
Proof.
  intros.
  destruct a; destruct b; simpl; auto.
  unfold N.div, Z.quot; simpl. destruct N.pos_div_eucl; auto.
Qed.

Lemma Nmod_Zrem : forall a b:N,
  Z.of_N (a mod b) = Z.rem (Z.of_N a) (Z.of_N b).
Proof.
  intros.
  destruct a; destruct b; simpl; auto.
  unfold N.modulo, Z.rem; simpl; destruct N.pos_div_eucl; auto.
Qed.

(** * Characterization of this euclidean division. *)

(** First, the usual equation [a=q*b+r]. Notice that [a mod 0]
   has been chosen to be [a], so this equation holds even for [b=0].
*)

Notation Z_quot_rem_eq := Z.quot_rem' (only parsing).

(** Then, the inequalities constraining the remainder:
    The remainder is bounded by the divisor, in term of absolute values *)

Theorem Zrem_lt : forall a b:Z, b<>0 ->
  Z.abs (Z.rem a b) < Z.abs b.
Proof.
  apply Z.rem_bound_abs.
Qed.

(** The sign of the remainder is the one of [a]. Due to the possible
   nullity of [a], a general result is to be stated in the following form:
*)

Theorem Zrem_sgn a b : 0 <= Z.sgn (Z.rem a b) * Z.sgn a.
Proof.
  destruct b as [ |b|b]; destruct a as [ |a|a]; simpl; auto with zarith;
  unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl;
  simpl; destruct n0; simpl; auto with zarith.
Qed.

(** This can also be said in a simplier way: *)

Theorem Zrem_sgn2 a b : 0 <= (Z.rem a b) * a.
Proof.
  rewrite <-Z.sgn_nonneg, Z.sgn_mul; apply Zrem_sgn.
Qed.

(** Reformulation of [Zquot_lt] and [Zrem_sgn] in 2
  then 4 particular cases. *)

Theorem Zrem_lt_pos a b : 0<=a -> b<>0 -> 0 <= Z.rem a b < Z.abs b.
Proof.
  intros.
  assert (0 <= Z.rem a b).
   generalize (Zrem_sgn a b).
   destruct (Zle_lt_or_eq 0 a H).
   rewrite <- Zsgn_pos in H1; rewrite H1. romega with *.
   subst a; simpl; auto.
  generalize (Zrem_lt a b H0); romega with *.
Qed.

Theorem Zrem_lt_neg a b : a<=0 -> b<>0 -> -Z.abs b < Z.rem a b <= 0.
Proof.
  intros.
  assert (Z.rem a b <= 0).
   generalize (Zrem_sgn a b).
   destruct (Zle_lt_or_eq a 0 H).
   rewrite <- Zsgn_neg in H1; rewrite H1; romega with *.
   subst a; simpl; auto.
  generalize (Zrem_lt a b H0); romega with *.
Qed.

Theorem Zrem_lt_pos_pos a b : 0<=a -> 0<b -> 0 <= Z.rem a b < b.
Proof.
  intros; generalize (Zrem_lt_pos a b); romega with *.
Qed.

Theorem Zrem_lt_pos_neg a b : 0<=a -> b<0 -> 0 <= Z.rem a b < -b.
Proof.
  intros; generalize (Zrem_lt_pos a b); romega with *.
Qed.

Theorem Zrem_lt_neg_pos a b : a<=0 -> 0<b -> -b < Z.rem a b <= 0.
Proof.
  intros; generalize (Zrem_lt_neg a b); romega with *.
Qed.

Theorem Zrem_lt_neg_neg a b : a<=0 -> b<0 -> b < Z.rem a b <= 0.
Proof.
  intros; generalize (Zrem_lt_neg a b); romega with *.
Qed.

(** * Division and Opposite *)

(* The precise equalities that are invalid with "historic" Zdiv. *)

Theorem Zquot_opp_l a b : (-a)÷b = -(a÷b).
Proof.
 destruct a; destruct b; simpl; auto;
  unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith.
Qed.

Theorem Zquot_opp_r a b : a÷(-b) = -(a÷b).
Proof.
 destruct a; destruct b; simpl; auto;
  unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith.
Qed.

Theorem Zrem_opp_l a b : Z.rem (-a) b = -(Z.rem a b).
Proof.
 destruct a; destruct b; simpl; auto;
  unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith.
Qed.

Theorem Zrem_opp_r a b : Z.rem a (-b) = Z.rem a b.
Proof.
 destruct a; destruct b; simpl; auto;
  unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith.
Qed.

Theorem Zquot_opp_opp a b : (-a)÷(-b) = a÷b.
Proof.
 destruct a; destruct b; simpl; auto;
  unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith.
Qed.

Theorem Zrem_opp_opp a b : Z.rem (-a) (-b) = -(Z.rem a b).
Proof.
 destruct a; destruct b; simpl; auto;
  unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith.
Qed.

(** * Unicity results *)

Definition Remainder a b r :=
  (0 <= a /\ 0 <= r < Z.abs b) \/ (a <= 0 /\ -Z.abs b < r <= 0).

Definition Remainder_alt a b r :=
  Z.abs r < Z.abs b /\ 0 <= r * a.

Lemma Remainder_equiv : forall a b r,
 Remainder a b r <-> Remainder_alt a b r.
Proof.
  unfold Remainder, Remainder_alt; intuition.
  romega with *.
  romega with *.
  rewrite <-(Zmult_opp_opp).
  apply Zmult_le_0_compat; romega.
  assert (0 <= Z.sgn r * Z.sgn a) by (rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto).
  destruct r; simpl Z.sgn in *; romega with *.
Qed.

Theorem Zquot_mod_unique_full:
 forall a b q r, Remainder a b r ->
   a = b*q + r -> q = a÷b /\ r = Z.rem a b.
Proof.
  destruct 1 as [(H,H0)|(H,H0)]; intros.
  apply Zdiv_mod_unique with b; auto.
  apply Zrem_lt_pos; auto.
  romega with *.
  rewrite <- H1; apply Z_quot_rem_eq.

  rewrite <- (Zopp_involutive a).
  rewrite Zquot_opp_l, Zrem_opp_l.
  generalize (Zdiv_mod_unique b (-q) (-a÷b) (-r) (Z.rem (-a) b)).
  generalize (Zrem_lt_pos (-a) b).
  rewrite <-Z_quot_rem_eq, <-Zopp_mult_distr_r, <-Zopp_plus_distr, <-H1.
  romega with *.
Qed.

Theorem Zquot_unique_full:
 forall a b q r, Remainder a b r ->
  a = b*q + r -> q = a÷b.
Proof.
 intros; destruct (Zquot_mod_unique_full a b q r); auto.
Qed.

Theorem Zquot_unique:
 forall a b q r, 0 <= a -> 0 <= r < b ->
   a = b*q + r -> q = a÷b.
Proof. exact Z.quot_unique. Qed.

Theorem Zrem_unique_full:
 forall a b q r, Remainder a b r ->
  a = b*q + r -> r = Z.rem a b.
Proof.
 intros; destruct (Zquot_mod_unique_full a b q r); auto.
Qed.

Theorem Zrem_unique:
 forall a b q r, 0 <= a -> 0 <= r < b ->
   a = b*q + r -> r = Z.rem a b.
Proof. exact Z.rem_unique. Qed.

(** * Basic values of divisions and modulo. *)

Lemma Zrem_0_l: forall a, Z.rem 0 a = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma Zrem_0_r: forall a, Z.rem a 0 = a.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma Zquot_0_l: forall a, 0÷a = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma Zquot_0_r: forall a, a÷0 = 0.
Proof.
  destruct a; simpl; auto.
Qed.

Lemma Zrem_1_r: forall a, Z.rem a 1 = 0.
Proof. exact Z.rem_1_r. Qed.

Lemma Zquot_1_r: forall a, a÷1 = a.
Proof. exact Z.quot_1_r. Qed.

Hint Resolve Zrem_0_l Zrem_0_r Zquot_0_l Zquot_0_r Zquot_1_r Zrem_1_r
 : zarith.

Lemma Zquot_1_l: forall a, 1 < a -> 1÷a = 0.
Proof. exact Z.quot_1_l. Qed.

Lemma Zrem_1_l: forall a, 1 < a -> Z.rem 1 a = 1.
Proof. exact Z.rem_1_l. Qed.

Lemma Z_quot_same : forall a:Z, a<>0 -> a÷a = 1.
Proof. exact Z.quot_same. Qed.

Ltac zero_or_not a :=
  destruct (Z.eq_dec a 0);
  [subst; rewrite ?Zrem_0_l, ?Zquot_0_l, ?Zrem_0_r, ?Zquot_0_r;
   auto with zarith|].

Lemma Z_rem_same : forall a, Z.rem a a = 0.
Proof. intros. zero_or_not a. apply Z.rem_same; auto. Qed.

Lemma Z_rem_mult : forall a b, Z.rem (a*b) b = 0.
Proof. intros. zero_or_not b. apply Z.rem_mul; auto. Qed.

Lemma Z_quot_mult : forall a b:Z, b <> 0 -> (a*b)÷b = a.
Proof. exact Z.quot_mul. Qed.

(** * Order results about Zrem and Zquot *)

(* Division of positive numbers is positive. *)

Lemma Z_quot_pos: forall a b, 0 <= a -> 0 <= b -> 0 <= a÷b.
Proof. intros. zero_or_not b. apply Z.quot_pos; auto with zarith. Qed.

(** As soon as the divisor is greater or equal than 2,
    the division is strictly decreasing. *)

Lemma Z_quot_lt : forall a b:Z, 0 < a -> 2 <= b -> a÷b < a.
Proof. intros. apply Z.quot_lt; auto with zarith. Qed.

(** A division of a small number by a bigger one yields zero. *)

Theorem Zquot_small: forall a b, 0 <= a < b -> a÷b = 0.
Proof. exact Z.quot_small. Qed.

(** Same situation, in term of modulo: *)

Theorem Zrem_small: forall a n, 0 <= a < n -> Z.rem a n = a.
Proof. exact Z.rem_small. Qed.

(** [Zge] is compatible with a positive division. *)

Lemma Z_quot_monotone : forall a b c, 0<=c -> a<=b -> a÷c <= b÷c.
Proof. intros. zero_or_not c. apply Z.quot_le_mono; auto with zarith. Qed.

(** With our choice of division, rounding of (a÷b) is always done toward zero: *)

Lemma Z_mult_quot_le : forall a b:Z, 0 <= a -> 0 <= b*(a÷b) <= a.
Proof. intros. zero_or_not b. apply Z.mul_quot_le; auto with zarith. Qed.

Lemma Z_mult_quot_ge : forall a b:Z, a <= 0 -> a <= b*(a÷b) <= 0.
Proof. intros. zero_or_not b. apply Z.mul_quot_ge; auto with zarith. Qed.

(** The previous inequalities between [b*(a÷b)] and [a] are exact
    iff the modulo is zero. *)

Lemma Z_quot_exact_full : forall a b:Z, a = b*(a÷b) <-> Z.rem a b = 0.
Proof. intros. zero_or_not b. intuition. apply Z.quot_exact; auto. Qed.

(** A modulo cannot grow beyond its starting point. *)

Theorem Zrem_le: forall a b, 0 <= a -> 0 <= b -> Z.rem a b <= a.
Proof. intros. zero_or_not b. apply Z.rem_le; auto with zarith. Qed.

(** Some additionnal inequalities about Zdiv. *)

Theorem Zquot_le_upper_bound:
  forall a b q, 0 < b -> a <= q*b -> a÷b <= q.
Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_le_upper_bound. Qed.

Theorem Zquot_lt_upper_bound:
  forall a b q, 0 <= a -> 0 < b -> a < q*b -> a÷b < q.
Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_lt_upper_bound. Qed.

Theorem Zquot_le_lower_bound:
  forall a b q, 0 < b -> q*b <= a -> q <= a÷b.
Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_le_lower_bound. Qed.

Theorem Zquot_sgn: forall a b,
  0 <= Z.sgn (a÷b) * Z.sgn a * Z.sgn b.
Proof.
  destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith;
  unfold Z.quot; simpl; destruct N.pos_div_eucl; simpl; destruct n; simpl; auto with zarith.
Qed.

(** * Relations between usual operations and Zmod and Zdiv *)

(** First, a result that used to be always valid with Zdiv,
    but must be restricted here.
    For instance, now (9+(-5)*2) rem 2 = -1 <> 1 = 9 rem 2 *)

Lemma Z_rem_plus : forall a b c:Z,
 0 <= (a+b*c) * a ->
 Z.rem (a + b * c) c = Z.rem a c.
Proof. intros. zero_or_not c. apply Z.rem_add; auto with zarith. Qed.

Lemma Z_quot_plus : forall a b c:Z,
 0 <= (a+b*c) * a -> c<>0 ->
 (a + b * c) ÷ c = a ÷ c + b.
Proof. intros. apply Z.quot_add; auto with zarith. Qed.

Theorem Z_quot_plus_l: forall a b c : Z,
 0 <= (a*b+c)*c -> b<>0 ->
 b<>0 -> (a * b + c) ÷ b = a + c ÷ b.
Proof. intros. apply Z.quot_add_l; auto with zarith. Qed.

(** Cancellations. *)

Lemma Zquot_mult_cancel_r : forall a b c:Z,
 c<>0 -> (a*c)÷(b*c) = a÷b.
Proof. intros. zero_or_not b. apply Z.quot_mul_cancel_r; auto. Qed.

Lemma Zquot_mult_cancel_l : forall a b c:Z,
 c<>0 -> (c*a)÷(c*b) = a÷b.
Proof.
 intros. rewrite (Zmult_comm c b). zero_or_not b.
 rewrite (Zmult_comm b c). apply Z.quot_mul_cancel_l; auto.
Qed.

Lemma Zmult_rem_distr_l: forall a b c,
  Z.rem (c*a) (c*b) = c * (Z.rem a b).
Proof.
 intros. zero_or_not c. rewrite (Zmult_comm c b). zero_or_not b.
 rewrite (Zmult_comm b c). apply Z.mul_rem_distr_l; auto.
Qed.

Lemma Zmult_rem_distr_r: forall a b c,
  Z.rem (a*c) (b*c) = (Z.rem a b) * c.
Proof.
 intros. zero_or_not b. rewrite (Zmult_comm b c). zero_or_not c.
 rewrite (Zmult_comm c b). apply Z.mul_rem_distr_r; auto.
Qed.

(** Operations modulo. *)

Theorem Zrem_rem: forall a n, Z.rem (Z.rem a n) n = Z.rem a n.
Proof. intros. zero_or_not n. apply Z.rem_rem; auto. Qed.

Theorem Zmult_rem: forall a b n,
 Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n.
Proof. intros. zero_or_not n. apply Z.mul_rem; auto. Qed.

(** addition and modulo

  Generally speaking, unlike with Zdiv, we don't have
       (a+b) rem n = (a rem n + b rem n) rem n
  for any a and b.
  For instance, take (8 + (-10)) rem 3 = -2 whereas
  (8 rem 3 + (-10 rem 3)) rem 3 = 1. *)

Theorem Zplus_rem: forall a b n,
 0 <= a * b ->
 Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n.
Proof. intros. zero_or_not n. apply Z.add_rem; auto. Qed.

Lemma Zplus_rem_idemp_l: forall a b n,
 0 <= a * b ->
 Z.rem (Z.rem a n + b) n = Z.rem (a + b) n.
Proof. intros. zero_or_not n. apply Z.add_rem_idemp_l; auto. Qed.

Lemma Zplus_rem_idemp_r: forall a b n,
 0 <= a*b ->
 Z.rem (b + Z.rem a n) n = Z.rem (b + a) n.
Proof.
 intros. zero_or_not n. apply Z.add_rem_idemp_r; auto.
 rewrite Zmult_comm; auto.
Qed.

Lemma Zmult_rem_idemp_l: forall a b n, Z.rem (Z.rem a n * b) n = Z.rem (a * b) n.
Proof. intros. zero_or_not n. apply Z.mul_rem_idemp_l; auto. Qed.

Lemma Zmult_rem_idemp_r: forall a b n, Z.rem (b * Z.rem a n) n = Z.rem (b * a) n.
Proof. intros. zero_or_not n. apply Z.mul_rem_idemp_r; auto. Qed.

(** Unlike with Zdiv, the following result is true without restrictions. *)

Lemma Zquot_Zquot : forall a b c, (a÷b)÷c = a÷(b*c).
Proof.
 intros. zero_or_not b. rewrite Zmult_comm. zero_or_not c.
 rewrite Zmult_comm. apply Z.quot_quot; auto.
Qed.

(** A last inequality: *)

Theorem Zquot_mult_le:
 forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a÷b) <= (c*a)÷b.
Proof. intros. zero_or_not b. apply Z.quot_mul_le; auto with zarith. Qed.

(** Z.rem is related to divisibility (see more in Znumtheory) *)

Lemma Zrem_divides : forall a b,
 Z.rem a b = 0 <-> exists c, a = b*c.
Proof.
 intros. zero_or_not b. firstorder.
 rewrite Z.rem_divide; trivial.
 split; intros (c,Hc); exists c; subst; auto with zarith.
Qed.

(** Particular case : dividing by 2 is related with parity *)

Lemma Zquot2_odd_remainder : forall a,
 Remainder a 2 (if Z.odd a then Z.sgn a else 0).
Proof.
 intros [ |p|p]. simpl.
 left. simpl. auto with zarith.
 left. destruct p; simpl; auto with zarith.
 right. destruct p; simpl; split; now auto with zarith.
Qed.

Notation Zquot2_quot := Zquot2_quot (only parsing).

Lemma Zrem_odd : forall a, Z.rem a 2 = if Z.odd a then Z.sgn a else 0.
Proof.
 intros. symmetry.
 apply Zrem_unique_full with (Zquot2 a).
 apply Zquot2_odd_remainder.
 apply Zquot2_odd_eqn.
Qed.

Lemma Zrem_even : forall a, Z.rem a 2 = if Z.even a then 0 else Z.sgn a.
Proof.
 intros a. rewrite Zrem_odd, Zodd_even_bool. now destruct Zeven_bool.
Qed.

Lemma Zeven_rem : forall a, Z.even a = Zeq_bool (Z.rem a 2) 0.
Proof.
 intros a. rewrite Zrem_even.
 destruct a as [ |p|p]; trivial; now destruct p.
Qed.

Lemma Zodd_rem : forall a, Z.odd a = negb (Zeq_bool (Z.rem a 2) 0).
Proof.
 intros a. rewrite Zrem_odd.
 destruct a as [ |p|p]; trivial; now destruct p.
Qed.

(** * Interaction with "historic" Zdiv *)

(** They agree at least on positive numbers: *)

Theorem Zquotrem_Zdiv_eucl_pos : forall a b:Z, 0 <= a -> 0 < b ->
  a÷b = a/b /\ Z.rem a b = a mod b.
Proof.
  intros.
  apply Zdiv_mod_unique with b.
  apply Zrem_lt_pos; auto with zarith.
  rewrite Zabs_eq; auto with *; apply Z_mod_lt; auto with *.
  rewrite <- Z_div_mod_eq; auto with *.
  symmetry; apply Z_quot_rem_eq; auto with *.
Qed.

Theorem Zquot_Zdiv_pos : forall a b, 0 <= a -> 0 <= b ->
  a÷b = a/b.
Proof.
 intros a b Ha Hb.
 destruct (Zle_lt_or_eq _ _ Hb).
 generalize (Zquotrem_Zdiv_eucl_pos a b Ha H); intuition.
 subst; rewrite Zquot_0_r, Zdiv_0_r; reflexivity.
Qed.

Theorem Zrem_Zmod_pos : forall a b, 0 <= a -> 0 < b ->
  Z.rem a b = a mod b.
Proof.
 intros a b Ha Hb; generalize (Zquotrem_Zdiv_eucl_pos a b Ha Hb);
 intuition.
Qed.

(** Modulos are null at the same places *)

Theorem Zrem_Zmod_zero : forall a b, b<>0 ->
 (Z.rem a b = 0 <-> a mod b = 0).
Proof.
 intros.
 rewrite Zrem_divides, Zmod_divides; intuition.
Qed.