(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 0 -> Z.abs (Z.rem a b) < Z.abs b. Proof. apply Z.rem_bound_abs. Qed. (** The sign of the remainder is the one of [a]. Due to the possible nullity of [a], a general result is to be stated in the following form: *) Theorem Zrem_sgn a b : 0 <= Z.sgn (Z.rem a b) * Z.sgn a. Proof. destruct b as [ |b|b]; destruct a as [ |a|a]; simpl; auto with zarith; unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; destruct n0; simpl; auto with zarith. Qed. (** This can also be said in a simplier way: *) Theorem Zrem_sgn2 a b : 0 <= (Z.rem a b) * a. Proof. rewrite <-Z.sgn_nonneg, Z.sgn_mul; apply Zrem_sgn. Qed. (** Reformulation of [Zquot_lt] and [Zrem_sgn] in 2 then 4 particular cases. *) Theorem Zrem_lt_pos a b : 0<=a -> b<>0 -> 0 <= Z.rem a b < Z.abs b. Proof. intros. assert (0 <= Z.rem a b). generalize (Zrem_sgn a b). destruct (Zle_lt_or_eq 0 a H). rewrite <- Zsgn_pos in H1; rewrite H1. romega with *. subst a; simpl; auto. generalize (Zrem_lt a b H0); romega with *. Qed. Theorem Zrem_lt_neg a b : a<=0 -> b<>0 -> -Z.abs b < Z.rem a b <= 0. Proof. intros. assert (Z.rem a b <= 0). generalize (Zrem_sgn a b). destruct (Zle_lt_or_eq a 0 H). rewrite <- Zsgn_neg in H1; rewrite H1; romega with *. subst a; simpl; auto. generalize (Zrem_lt a b H0); romega with *. Qed. Theorem Zrem_lt_pos_pos a b : 0<=a -> 0 0 <= Z.rem a b < b. Proof. intros; generalize (Zrem_lt_pos a b); romega with *. Qed. Theorem Zrem_lt_pos_neg a b : 0<=a -> b<0 -> 0 <= Z.rem a b < -b. Proof. intros; generalize (Zrem_lt_pos a b); romega with *. Qed. Theorem Zrem_lt_neg_pos a b : a<=0 -> 0 -b < Z.rem a b <= 0. Proof. intros; generalize (Zrem_lt_neg a b); romega with *. Qed. Theorem Zrem_lt_neg_neg a b : a<=0 -> b<0 -> b < Z.rem a b <= 0. Proof. intros; generalize (Zrem_lt_neg a b); romega with *. Qed. (** * Division and Opposite *) (* The precise equalities that are invalid with "historic" Zdiv. *) Theorem Zquot_opp_l a b : (-a)÷b = -(a÷b). Proof. destruct a; destruct b; simpl; auto; unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. Qed. Theorem Zquot_opp_r a b : a÷(-b) = -(a÷b). Proof. destruct a; destruct b; simpl; auto; unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. Qed. Theorem Zrem_opp_l a b : Z.rem (-a) b = -(Z.rem a b). Proof. destruct a; destruct b; simpl; auto; unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. Qed. Theorem Zrem_opp_r a b : Z.rem a (-b) = Z.rem a b. Proof. destruct a; destruct b; simpl; auto; unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. Qed. Theorem Zquot_opp_opp a b : (-a)÷(-b) = a÷b. Proof. destruct a; destruct b; simpl; auto; unfold Z.quot, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. Qed. Theorem Zrem_opp_opp a b : Z.rem (-a) (-b) = -(Z.rem a b). Proof. destruct a; destruct b; simpl; auto; unfold Z.rem, Z.quotrem; destruct N.pos_div_eucl; simpl; auto with zarith. Qed. (** * Unicity results *) Definition Remainder a b r := (0 <= a /\ 0 <= r < Z.abs b) \/ (a <= 0 /\ -Z.abs b < r <= 0). Definition Remainder_alt a b r := Z.abs r < Z.abs b /\ 0 <= r * a. Lemma Remainder_equiv : forall a b r, Remainder a b r <-> Remainder_alt a b r. Proof. unfold Remainder, Remainder_alt; intuition. romega with *. romega with *. rewrite <-(Zmult_opp_opp). apply Zmult_le_0_compat; romega. assert (0 <= Z.sgn r * Z.sgn a) by (rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto). destruct r; simpl Z.sgn in *; romega with *. Qed. Theorem Zquot_mod_unique_full: forall a b q r, Remainder a b r -> a = b*q + r -> q = a÷b /\ r = Z.rem a b. Proof. destruct 1 as [(H,H0)|(H,H0)]; intros. apply Zdiv_mod_unique with b; auto. apply Zrem_lt_pos; auto. romega with *. rewrite <- H1; apply Z_quot_rem_eq. rewrite <- (Zopp_involutive a). rewrite Zquot_opp_l, Zrem_opp_l. generalize (Zdiv_mod_unique b (-q) (-a÷b) (-r) (Z.rem (-a) b)). generalize (Zrem_lt_pos (-a) b). rewrite <-Z_quot_rem_eq, <-Zopp_mult_distr_r, <-Zopp_plus_distr, <-H1. romega with *. Qed. Theorem Zquot_unique_full: forall a b q r, Remainder a b r -> a = b*q + r -> q = a÷b. Proof. intros; destruct (Zquot_mod_unique_full a b q r); auto. Qed. Theorem Zquot_unique: forall a b q r, 0 <= a -> 0 <= r < b -> a = b*q + r -> q = a÷b. Proof. exact Z.quot_unique. Qed. Theorem Zrem_unique_full: forall a b q r, Remainder a b r -> a = b*q + r -> r = Z.rem a b. Proof. intros; destruct (Zquot_mod_unique_full a b q r); auto. Qed. Theorem Zrem_unique: forall a b q r, 0 <= a -> 0 <= r < b -> a = b*q + r -> r = Z.rem a b. Proof. exact Z.rem_unique. Qed. (** * Basic values of divisions and modulo. *) Lemma Zrem_0_l: forall a, Z.rem 0 a = 0. Proof. destruct a; simpl; auto. Qed. Lemma Zrem_0_r: forall a, Z.rem a 0 = a. Proof. destruct a; simpl; auto. Qed. Lemma Zquot_0_l: forall a, 0÷a = 0. Proof. destruct a; simpl; auto. Qed. Lemma Zquot_0_r: forall a, a÷0 = 0. Proof. destruct a; simpl; auto. Qed. Lemma Zrem_1_r: forall a, Z.rem a 1 = 0. Proof. exact Z.rem_1_r. Qed. Lemma Zquot_1_r: forall a, a÷1 = a. Proof. exact Z.quot_1_r. Qed. Hint Resolve Zrem_0_l Zrem_0_r Zquot_0_l Zquot_0_r Zquot_1_r Zrem_1_r : zarith. Lemma Zquot_1_l: forall a, 1 < a -> 1÷a = 0. Proof. exact Z.quot_1_l. Qed. Lemma Zrem_1_l: forall a, 1 < a -> Z.rem 1 a = 1. Proof. exact Z.rem_1_l. Qed. Lemma Z_quot_same : forall a:Z, a<>0 -> a÷a = 1. Proof. exact Z.quot_same. Qed. Ltac zero_or_not a := destruct (Z.eq_dec a 0); [subst; rewrite ?Zrem_0_l, ?Zquot_0_l, ?Zrem_0_r, ?Zquot_0_r; auto with zarith|]. Lemma Z_rem_same : forall a, Z.rem a a = 0. Proof. intros. zero_or_not a. apply Z.rem_same; auto. Qed. Lemma Z_rem_mult : forall a b, Z.rem (a*b) b = 0. Proof. intros. zero_or_not b. apply Z.rem_mul; auto. Qed. Lemma Z_quot_mult : forall a b:Z, b <> 0 -> (a*b)÷b = a. Proof. exact Z.quot_mul. Qed. (** * Order results about Zrem and Zquot *) (* Division of positive numbers is positive. *) Lemma Z_quot_pos: forall a b, 0 <= a -> 0 <= b -> 0 <= a÷b. Proof. intros. zero_or_not b. apply Z.quot_pos; auto with zarith. Qed. (** As soon as the divisor is greater or equal than 2, the division is strictly decreasing. *) Lemma Z_quot_lt : forall a b:Z, 0 < a -> 2 <= b -> a÷b < a. Proof. intros. apply Z.quot_lt; auto with zarith. Qed. (** A division of a small number by a bigger one yields zero. *) Theorem Zquot_small: forall a b, 0 <= a < b -> a÷b = 0. Proof. exact Z.quot_small. Qed. (** Same situation, in term of modulo: *) Theorem Zrem_small: forall a n, 0 <= a < n -> Z.rem a n = a. Proof. exact Z.rem_small. Qed. (** [Zge] is compatible with a positive division. *) Lemma Z_quot_monotone : forall a b c, 0<=c -> a<=b -> a÷c <= b÷c. Proof. intros. zero_or_not c. apply Z.quot_le_mono; auto with zarith. Qed. (** With our choice of division, rounding of (a÷b) is always done toward zero: *) Lemma Z_mult_quot_le : forall a b:Z, 0 <= a -> 0 <= b*(a÷b) <= a. Proof. intros. zero_or_not b. apply Z.mul_quot_le; auto with zarith. Qed. Lemma Z_mult_quot_ge : forall a b:Z, a <= 0 -> a <= b*(a÷b) <= 0. Proof. intros. zero_or_not b. apply Z.mul_quot_ge; auto with zarith. Qed. (** The previous inequalities between [b*(a÷b)] and [a] are exact iff the modulo is zero. *) Lemma Z_quot_exact_full : forall a b:Z, a = b*(a÷b) <-> Z.rem a b = 0. Proof. intros. zero_or_not b. intuition. apply Z.quot_exact; auto. Qed. (** A modulo cannot grow beyond its starting point. *) Theorem Zrem_le: forall a b, 0 <= a -> 0 <= b -> Z.rem a b <= a. Proof. intros. zero_or_not b. apply Z.rem_le; auto with zarith. Qed. (** Some additionnal inequalities about Zdiv. *) Theorem Zquot_le_upper_bound: forall a b q, 0 < b -> a <= q*b -> a÷b <= q. Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_le_upper_bound. Qed. Theorem Zquot_lt_upper_bound: forall a b q, 0 <= a -> 0 < b -> a < q*b -> a÷b < q. Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_lt_upper_bound. Qed. Theorem Zquot_le_lower_bound: forall a b q, 0 < b -> q*b <= a -> q <= a÷b. Proof. intros a b q; rewrite Zmult_comm; apply Z.quot_le_lower_bound. Qed. Theorem Zquot_sgn: forall a b, 0 <= Z.sgn (a÷b) * Z.sgn a * Z.sgn b. Proof. destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith; unfold Z.quot; simpl; destruct N.pos_div_eucl; simpl; destruct n; simpl; auto with zarith. Qed. (** * Relations between usual operations and Zmod and Zdiv *) (** First, a result that used to be always valid with Zdiv, but must be restricted here. For instance, now (9+(-5)*2) rem 2 = -1 <> 1 = 9 rem 2 *) Lemma Z_rem_plus : forall a b c:Z, 0 <= (a+b*c) * a -> Z.rem (a + b * c) c = Z.rem a c. Proof. intros. zero_or_not c. apply Z.rem_add; auto with zarith. Qed. Lemma Z_quot_plus : forall a b c:Z, 0 <= (a+b*c) * a -> c<>0 -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros. apply Z.quot_add; auto with zarith. Qed. Theorem Z_quot_plus_l: forall a b c : Z, 0 <= (a*b+c)*c -> b<>0 -> b<>0 -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros. apply Z.quot_add_l; auto with zarith. Qed. (** Cancellations. *) Lemma Zquot_mult_cancel_r : forall a b c:Z, c<>0 -> (a*c)÷(b*c) = a÷b. Proof. intros. zero_or_not b. apply Z.quot_mul_cancel_r; auto. Qed. Lemma Zquot_mult_cancel_l : forall a b c:Z, c<>0 -> (c*a)÷(c*b) = a÷b. Proof. intros. rewrite (Zmult_comm c b). zero_or_not b. rewrite (Zmult_comm b c). apply Z.quot_mul_cancel_l; auto. Qed. Lemma Zmult_rem_distr_l: forall a b c, Z.rem (c*a) (c*b) = c * (Z.rem a b). Proof. intros. zero_or_not c. rewrite (Zmult_comm c b). zero_or_not b. rewrite (Zmult_comm b c). apply Z.mul_rem_distr_l; auto. Qed. Lemma Zmult_rem_distr_r: forall a b c, Z.rem (a*c) (b*c) = (Z.rem a b) * c. Proof. intros. zero_or_not b. rewrite (Zmult_comm b c). zero_or_not c. rewrite (Zmult_comm c b). apply Z.mul_rem_distr_r; auto. Qed. (** Operations modulo. *) Theorem Zrem_rem: forall a n, Z.rem (Z.rem a n) n = Z.rem a n. Proof. intros. zero_or_not n. apply Z.rem_rem; auto. Qed. Theorem Zmult_rem: forall a b n, Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n. Proof. intros. zero_or_not n. apply Z.mul_rem; auto. Qed. (** addition and modulo Generally speaking, unlike with Zdiv, we don't have (a+b) rem n = (a rem n + b rem n) rem n for any a and b. For instance, take (8 + (-10)) rem 3 = -2 whereas (8 rem 3 + (-10 rem 3)) rem 3 = 1. *) Theorem Zplus_rem: forall a b n, 0 <= a * b -> Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n. Proof. intros. zero_or_not n. apply Z.add_rem; auto. Qed. Lemma Zplus_rem_idemp_l: forall a b n, 0 <= a * b -> Z.rem (Z.rem a n + b) n = Z.rem (a + b) n. Proof. intros. zero_or_not n. apply Z.add_rem_idemp_l; auto. Qed. Lemma Zplus_rem_idemp_r: forall a b n, 0 <= a*b -> Z.rem (b + Z.rem a n) n = Z.rem (b + a) n. Proof. intros. zero_or_not n. apply Z.add_rem_idemp_r; auto. rewrite Zmult_comm; auto. Qed. Lemma Zmult_rem_idemp_l: forall a b n, Z.rem (Z.rem a n * b) n = Z.rem (a * b) n. Proof. intros. zero_or_not n. apply Z.mul_rem_idemp_l; auto. Qed. Lemma Zmult_rem_idemp_r: forall a b n, Z.rem (b * Z.rem a n) n = Z.rem (b * a) n. Proof. intros. zero_or_not n. apply Z.mul_rem_idemp_r; auto. Qed. (** Unlike with Zdiv, the following result is true without restrictions. *) Lemma Zquot_Zquot : forall a b c, (a÷b)÷c = a÷(b*c). Proof. intros. zero_or_not b. rewrite Zmult_comm. zero_or_not c. rewrite Zmult_comm. apply Z.quot_quot; auto. Qed. (** A last inequality: *) Theorem Zquot_mult_le: forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a÷b) <= (c*a)÷b. Proof. intros. zero_or_not b. apply Z.quot_mul_le; auto with zarith. Qed. (** Z.rem is related to divisibility (see more in Znumtheory) *) Lemma Zrem_divides : forall a b, Z.rem a b = 0 <-> exists c, a = b*c. Proof. intros. zero_or_not b. firstorder. rewrite Z.rem_divide; trivial. split; intros (c,Hc); exists c; subst; auto with zarith. Qed. (** Particular case : dividing by 2 is related with parity *) Lemma Zquot2_odd_remainder : forall a, Remainder a 2 (if Z.odd a then Z.sgn a else 0). Proof. intros [ |p|p]. simpl. left. simpl. auto with zarith. left. destruct p; simpl; auto with zarith. right. destruct p; simpl; split; now auto with zarith. Qed. Notation Zquot2_quot := Zquot2_quot (only parsing). Lemma Zrem_odd : forall a, Z.rem a 2 = if Z.odd a then Z.sgn a else 0. Proof. intros. symmetry. apply Zrem_unique_full with (Zquot2 a). apply Zquot2_odd_remainder. apply Zquot2_odd_eqn. Qed. Lemma Zrem_even : forall a, Z.rem a 2 = if Z.even a then 0 else Z.sgn a. Proof. intros a. rewrite Zrem_odd, Zodd_even_bool. now destruct Zeven_bool. Qed. Lemma Zeven_rem : forall a, Z.even a = Zeq_bool (Z.rem a 2) 0. Proof. intros a. rewrite Zrem_even. destruct a as [ |p|p]; trivial; now destruct p. Qed. Lemma Zodd_rem : forall a, Z.odd a = negb (Zeq_bool (Z.rem a 2) 0). Proof. intros a. rewrite Zrem_odd. destruct a as [ |p|p]; trivial; now destruct p. Qed. (** * Interaction with "historic" Zdiv *) (** They agree at least on positive numbers: *) Theorem Zquotrem_Zdiv_eucl_pos : forall a b:Z, 0 <= a -> 0 < b -> a÷b = a/b /\ Z.rem a b = a mod b. Proof. intros. apply Zdiv_mod_unique with b. apply Zrem_lt_pos; auto with zarith. rewrite Zabs_eq; auto with *; apply Z_mod_lt; auto with *. rewrite <- Z_div_mod_eq; auto with *. symmetry; apply Z_quot_rem_eq; auto with *. Qed. Theorem Zquot_Zdiv_pos : forall a b, 0 <= a -> 0 <= b -> a÷b = a/b. Proof. intros a b Ha Hb. destruct (Zle_lt_or_eq _ _ Hb). generalize (Zquotrem_Zdiv_eucl_pos a b Ha H); intuition. subst; rewrite Zquot_0_r, Zdiv_0_r; reflexivity. Qed. Theorem Zrem_Zmod_pos : forall a b, 0 <= a -> 0 < b -> Z.rem a b = a mod b. Proof. intros a b Ha Hb; generalize (Zquotrem_Zdiv_eucl_pos a b Ha Hb); intuition. Qed. (** Modulos are null at the same places *) Theorem Zrem_Zmod_zero : forall a b, b<>0 -> (Z.rem a b = 0 <-> a mod b = 0). Proof. intros. rewrite Zrem_divides, Zmod_divides; intuition. Qed.