summaryrefslogtreecommitdiff
path: root/theories/Sorting/Permutation.v
blob: 3ff026c2fbc828a69ccedeec73825d055c788758 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Permutation.v 9245 2006-10-17 12:53:34Z notin $ i*)

Require Import Relations.
Require Import List.
Require Import Multiset.
Require Import Arith.

(** This file define a notion of permutation for lists, based on multisets: 
    there exists a permutation between two lists iff every elements have 
    the same multiplicities in the two lists. 

    Unlike [List.Permutation], the present notion of permutation requires
    a decidable equality. At the same time, this definition can be used 
    with a non-standard equality, whereas [List.Permutation] cannot.
      
    The present file contains basic results, obtained without any particular
    assumption on the decidable equality used.
	
    File [PermutSetoid] contains additional results about permutations 
    with respect to an setoid equality (i.e. an equivalence relation). 

    Finally, file [PermutEq] concerns Coq equality : this file is similar 
    to the previous one, but proves in addition that [List.Permutation]
    and [permutation] are equivalent in this context.
x*)

Set Implicit Arguments.

Section defs.

  (** * From lists to multisets *)

  Variable A : Set.
  Variable eqA : relation A.
  Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.

  Let emptyBag := EmptyBag A.
  Let singletonBag := SingletonBag _ eqA_dec.

  (** contents of a list *)

  Fixpoint list_contents (l:list A) : multiset A :=
    match l with
      | nil => emptyBag
      | a :: l => munion (singletonBag a) (list_contents l)
    end.

  Lemma list_contents_app :
    forall l m:list A,
      meq (list_contents (l ++ m)) (munion (list_contents l) (list_contents m)).
  Proof.
    simple induction l; simpl in |- *; auto with datatypes.
    intros.
    apply meq_trans with
      (munion (singletonBag a) (munion (list_contents l0) (list_contents m)));
      auto with datatypes.
  Qed.

  
  (** * [permutation]: definition and basic properties *)
  
  Definition permutation (l m:list A) :=
    meq (list_contents l) (list_contents m).

  Lemma permut_refl : forall l:list A, permutation l l.
  Proof.
    unfold permutation in |- *; auto with datatypes.
  Qed.
  
  Lemma permut_sym :
    forall l1 l2 : list A, permutation l1 l2 -> permutation l2 l1.
  Proof.
    unfold permutation, meq; intros; apply sym_eq; trivial.
  Qed.
  
  Lemma permut_tran :
    forall l m n:list A, permutation l m -> permutation m n -> permutation l n.
  Proof.
    unfold permutation in |- *; intros.
    apply meq_trans with (list_contents m); auto with datatypes.
  Qed.
  
  Lemma permut_cons :
    forall l m:list A,
      permutation l m -> forall a:A, permutation (a :: l) (a :: m).
  Proof.
    unfold permutation in |- *; simpl in |- *; auto with datatypes.
  Qed.
  
  Lemma permut_app :
    forall l l' m m':list A,
      permutation l l' -> permutation m m' -> permutation (l ++ m) (l' ++ m').
  Proof.
    unfold permutation in |- *; intros.
    apply meq_trans with (munion (list_contents l) (list_contents m)); 
      auto using permut_cons, list_contents_app with datatypes.
    apply meq_trans with (munion (list_contents l') (list_contents m')); 
      auto using permut_cons, list_contents_app with datatypes.
    apply meq_trans with (munion (list_contents l') (list_contents m));
      auto using permut_cons, list_contents_app with datatypes.
  Qed.

  Lemma permut_add_inside :
    forall a l1 l2 l3 l4, 
      permutation (l1 ++ l2) (l3 ++ l4) ->
      permutation (l1 ++ a :: l2) (l3 ++ a :: l4).
  Proof.
    unfold permutation, meq in *; intros.
    generalize (H a0); clear H.
    do 4 rewrite list_contents_app.
    simpl.
    destruct (eqA_dec a a0); simpl; auto with arith.
    do 2 rewrite <- plus_n_Sm; f_equal; auto.
  Qed.
  
  Lemma permut_add_cons_inside :
    forall a l l1 l2, 
      permutation l (l1 ++ l2) ->
      permutation (a :: l) (l1 ++ a :: l2).
  Proof.
    intros;
      replace (a :: l) with (nil ++ a :: l); trivial;
	apply permut_add_inside; trivial.
  Qed.

  Lemma permut_middle :
    forall (l m:list A) (a:A), permutation (a :: l ++ m) (l ++ a :: m).
  Proof.
    intros; apply permut_add_cons_inside; auto using permut_sym, permut_refl.
  Qed.
  
  Lemma permut_sym_app :
    forall l1 l2, permutation (l1 ++ l2) (l2 ++ l1).
  Proof.
    intros l1 l2;
      unfold permutation, meq; 
	intro a; do 2 rewrite list_contents_app; simpl; 
	  auto with arith.
  Qed.

  Lemma permut_rev : 
    forall l, permutation l (rev l).
  Proof.
    induction l.
    simpl; trivial using permut_refl.
    simpl.
    apply permut_add_cons_inside.
    rewrite <- app_nil_end. trivial.
  Qed.

  (** * Some inversion results. *)
  Lemma permut_conv_inv :
    forall e l1 l2, permutation (e :: l1) (e :: l2) -> permutation l1 l2.
  Proof.
    intros e l1 l2; unfold permutation, meq; simpl; intros H a;
      generalize (H a); apply plus_reg_l.
  Qed.

  Lemma permut_app_inv1 : 
    forall l l1 l2, permutation (l1 ++ l) (l2 ++ l) -> permutation l1 l2.
  Proof.
    intros l l1 l2; unfold permutation, meq; simpl;
      intros H a; generalize (H a); clear H.
    do 2 rewrite list_contents_app.
    simpl.
    intros; apply plus_reg_l with (multiplicity (list_contents l) a).
    rewrite plus_comm; rewrite H; rewrite plus_comm.
    trivial.
  Qed.

  Lemma permut_app_inv2 : 
    forall l l1 l2, permutation (l ++ l1) (l ++ l2) -> permutation l1 l2.
  Proof.
    intros l l1 l2; unfold permutation, meq; simpl;
      intros H a; generalize (H a); clear H.
    do 2 rewrite list_contents_app.
    simpl.
    intros; apply plus_reg_l with (multiplicity (list_contents l) a).
    trivial.
  Qed.

  Lemma permut_remove_hd :
    forall l l1 l2 a,   
      permutation (a :: l) (l1 ++ a :: l2) -> permutation l (l1 ++ l2).
  Proof.
    intros l l1 l2 a; unfold permutation, meq; simpl; intros H a0; generalize (H a0); clear H.
    do 2 rewrite list_contents_app; simpl; intro H.
    apply plus_reg_l with (if eqA_dec a a0 then 1 else 0).
    rewrite H; clear H.
    symmetry; rewrite plus_comm.
    repeat rewrite <- plus_assoc; f_equal.
    apply plus_comm.
  Qed.

End defs.

(** For compatibilty *) 
Notation permut_right := permut_cons.
Unset Implicit Arguments.